
REPORT DOCUMENTATION PAGE RF'L INSTRUCTIONS
GOV ACESSON I BEFO)RE COMPLETINr FORM

QEP Ql~~~ ~ ~ ~ ~ ~ NNBQ2GV CCSINN ECIPIENT.S CATALOG NUMBER

AIM 1180
A TILE 1 d Sbflfr: TYPE OF REPORT & PERIOD COVERED

How To Do the Right Thing Memorandum

6, PERFORMING 004G. REPORT NUMBER

7, AUjTNO01*j I. CONTRACT OR GRANT HUMBERre)

Pattie Maes NOO0i 4-86--K-01 24
NOOO 14-86-K-0685

9 EropiNG -q: wIZATioNAME AND ADDRESS 10 Pn lmE.mNTPOF-TSAREA A WORK UNIT NUMBERS

,%rtif icial Inteliligence Laboratory
545 Technology Square
Cambridge, MA 02139

I. CONTROLLING OFFICE NAME AND0 ADDRESS 12. REPORT OATE

C)Advanced Research Projects Agency October 1989
C...)1400 Wilson Blvd. 13. HUMMER OF PAGES

Arlington, VA 22209 51
IC4 MONITORING AGENCY NAME A AOORESS(UI different from ContohIlini Office) It. SECURITY CLASS. (of the* report)

Office of Naval Research UNCLASSIFIED
Li....Information Systems________________

Arlington, VA 22217 158 OECLASSIFICATION/OOWNGRADNG

16.~ DISTRIBUTION STATEMENT (of this Report)

Distribution is unlimited

(') UTIOM ST ATEMCNT (of EN. abstract sniffedEIn Block .20,$difrnboA -Lr-%01-

o APRO219A B
LEaNTARY NOTIES

I ne

)ADS (Continue on favor@@ if4t* It Rooace aw Ied entify By block nmbr)

.. acning Spreading Activation Algorithms- (-n Seeto-CnrlAroti-.rs~t* ~ ~ '
Autonomous Agents

30. ABSTRACT (Continue an F.ee@ old* it 0144048M aid Identifyp Op block ntOor)0

This paper presents a novel approach to the problem of action selection
for an autonomous agent. An agent is viewed as a collection of competence
modules. Action selection is modelled as an emergent property of an activa-
tion/inhibition dynamics among these modules. A con~rete action selection
algorithm is presented and a detailed account of the results is given. This
algorithm combines characteristics of both traditional planners and reactive

(continued a~n-.back)

D D I J NRI 1473 EDITION Oil I NOV 65 IS OUSOLIETE UNC LASS IF IED-
~ fS / 14~o 0 ! 0 -0 1 461 1 S C U IT Y C L A S S I IC A T IO " O f T N IS P A G E (W n D ate 8 0it 69 6.

Apltvsd for pubH* rs~oa.;

Block 20 continued:

systems. it provides global parameters, which one can use to tune the actionselection behavior along several criteria, such as goal orientedness versus situa-tion orientedness, bias towards ongoing plans versus adaptivity, and sensitivityto goal conflicts and 'thoughtfulness' versus speed. ,

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1180 December 1989

How To Do the Right Thing

Pattie Maes

Abstract

This paper presents a novel approach to the problem of action selection
for an autonomous agent. An agent is viewed as a collection of com-
petence modules. Action selection is modeled as an emergent property
of an activation/inhibition dynamics among these modules. A con-
crete action selection algorithm is presented and a detailed account of
the results is given. This algorithm combines characteristics of both
traditional planners and reactive systems: it produces fast and robust
activity in a tight interaction loop with the environment, while at the
same time allowing for some prediction and planning to take place. It
provides global parameters, which one can use to tune the action selec-
tion behavior to the characteristics of the task environment. As such
one can smoothly trade off goal-orientedness for situation-orientedness,
bias towards ongoing plans (inertia) for adaptivity, thoughtfulness for
speed, and adjust its sensitivity to goal conflicts.

Copyright @ Massachusetts Institute of Technology, 1989

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Supported by Siemens with additional support flom the University
Research Initiative under Office of Naval Research contract N00014-86-K-0685, and the Defense
Advanced Research Projects Agency under Office of Naval Research contract N00014-85-k-0124.

.1 Introduction

This paper addresses the following problem. Imagine an autonomous agent which
has to achieve a number of global goals in a complex dynamic environment. An
example could be a rover that has to explore Mars and collect samples of soil. How

can such an agent select 'the most appropriate' or 'the most relevant' next action
to take at a particular moment, when facing a particular situation? Important
constraints are that the world is too complex to be entirely predictable and that
the agent has limited computational resources and limited time resources. This
implies that the action selection cannot be completely 'rational' or optimal. It
should, however, be robust, fast, and make 'good enough' decisions (Simon, 1955).
By 'good enough' we mean, among other things, that the action selection behavior
should demonstrate the following characteristics:

" it favors actions that are goal-oriented, in particular, actions that contribute
to several goals at once,

" it favors actions that are relevant to the current situation, in particular it
exploits opportunities and is highly adaptive to unpredictable and changing
situations,

" it favors actions that contribute to the ongoing goal/plan (unless another
action rates a lot better), i.e., it 'sticks' onto a particular goal unless there is
a good reason to start working on something different.

" it looks ahead (or 'plans'), in particular to avoid hazardous situations and
handle interacting and conflicting goals,

" it is robust (never completely breaks down), even when certain components
fail,

" and it is reactive and fast.

The paper studies this problem in the context of the Society of the Mind the-
ory (Minsky, 1986) to which the Subsumption Architecture (Brooks, 1986) is also
related. This theory suggests the building of an intelligent system as a society
of interacting, mindless agents, each having their own specific competence. For
example, a society of agents that is able to build a tower would incorporate 'coin- on For
petence modules' for finding a block, for grasping a block, for moving a block, etc. -?A&I

The idea is that competence modules cooperate (locally) in such a way that the '1 0
society as a whole functions properly. Such an architecture is very attractive be- ',ed 0

cause of its distributedness, modular structure, emergent global functionality and
robustness. By

Distributi[

Avallablility Codes

1Vai- amd/or
M Speolal

One of the open problems is how action can be controlled in such a distributed
system. More specifically: (i) how is it determined whether or not some compe-
tence module should become active (take some real world actions by controlling
the effectors) at a specific moment, and (ii) what are the factors that determine
cooperation among certain competence modules. Several solutions can be adopted.
One approach is to hand-code (and by that hard-wire) the control flow among the
competence modules (Brooks, 1986). Another approach is to introduce a hierar-
chical structure to tell competence modules whether they are allowed to perform
an action or not. This paper investigates yet another, entirely different type of
solution.

The hypotheses that are tested are:

* 'good enough' action selection of the global system can be obtained by letting
the competence modules activate and inhibit each other in the right way,

" no 'bureaucratic' competence modules are necessary (i.e., modules whose
only competence is determining which other modules should be activated or
inhibited) nor do we need global forms of control.

We are studying the adequacy of these hypotheses are attempting to determine
which activation/inhibition dynamics is appropriate. To this end we are develop-
ing a series of algorithms and testing them in computer simulations. One such
algorithm was discussed in (Maes, 1989). This paper describes a variation on the
algorithm which is simpler and produces more interesting results'.

Experiments have been performed for several applications. The resulting sys-
tems do exhibit the desired properties of goal-orientedness, situation-orientedness,
adaptivity, robustness, looking ahead, etc. Further, global parameters make it
possible to smoothly mediate between these action selection criteria, such as trad-
ing off goal-orientedness for data-orientedness, adaptivity for inertia, sensitivity to
goal conflicts and thoughtfulness for speed.

One cannot classify this algorithm as either belonging to the traditional AI ap-
proach (in which competence is programmed) or to the connectionist approach (in
which competence is the result of tabula rasa learning). Nor is it a hybrid system
in the sense that there would be a distinct symbolic and subsymbolic component.
Instead, the algorithm completely integrates characteristics of both approaches by
using a connectionist computational model on a symbolic, structured representa-
tion. By doing so, it combines the best of both worlds:

* From connectionism it inherits the interesting properties of intrinsic par-
allelism, fault-tolerance, sophisticated retrieval and matching capabilities,

1ln particular, this algorithm also makes use of 'inhibition' among modules, which makes
it possible to deal with interacting goals. Further, there are new results on how the global
parameters can be used to tune the action selection behavior along different dimensions.

2

density (or continuity) and global emergent computation from uniform local
interaction rules. On the other hand, it avoids putting the whole burden on
learning and classification (without excluding the possibility of applying the
learning techniques developed in this area).

From symbolic AI, it adopts representation and structuring principles. The
network is prewired, its links have specific meanings which can be understood
(such as causality) and nodes are large, meaningful units. Thus, the algo-
rithm inherits such interesting properties as explanation facilities and pro-
grammability (the network can be augmented by hand). It further provides a
compositional solution to the problem of action selection, which means that
the same parts are reused for different problems (e.g. the same network can
be given different goals at different times). As a consequence, the networks
are smaller (and therefore might prove to be easier to learn or improve).
On the other hand, the algorithm avoids problems of traditional AI solu-
tions such as seriality/slowness, brittleness, rigidity, and the communication
complexity of distributed Al systems.

This paper is structured as follows: section 2 introduces the algorithm for
action selection, section 3 presents a mathematical model, section 4 sketches how
it works, section 5 discusses the empirical results obtained, section 6 reflects on
the limits of the current algorithm, section 7 compares the algorithm with related
work, and finally, section 8 draws some conclusions.

2 Algorithm

An autonomous agent is viewed as a set of competence modules. These competence
modules resemble the operators of a classical planning system. A competence
module i can be described by a tuple (ci, aj, d,, as). ci is a list of preconditions
which have to be fulfilled before the competence module can become active. aj
and di represent the expected effects of the competence module's action in terms
of an add list and a delete list. In addition, each competence module has a level
of activation a1 . A competence module is ezecutable at time t when all of its
preconditions are observed to be true at time t. An executable competence module
whose activation-level surpasses a threshold may be selected, which means that it
performs some real world actions. The operation of a competence module (what
computation it performs, what actions it takes and how) is not made explicit,
i.e., competence modules could be hard-wired inside, they could perform logical
inference, or whatever.

Competence modules are linked in a network through three types of links:
successor links, predecessor links, and conflicter links. The description of the

i3

competence modules of an autonomous agent in terms of a precondition list, add
list and delete list completely defines this network:

* There is a successor link from competence module z to competence module
y ('z has y as successor') for every proposition p that is a member of the
add list of z and also member of the precondition list of y (so more than
one successor link between two competence modules may exist). Formally,
given competence module z = (c., a., d, ai) and competence module y =
(c, a., d, c), there is a successor link from x to y, for every proposition
p E a. n cy.

" A predecessor link from module z to module y ('z has y as predecessor')
exists for every successor link from y to z. Formally, given competence
module z = (c., a., d -, at) and competence module y = (cy, ay , dy, c), there
is a predecessor link from z to y, for every proposition p E c. n a.

" There is a conflicter link from module x to module y ('y conflicts with
x') for every proposition p that is a member of the delete list of y and a
member of the precondition list of z. Formally, given competence module
x = (c, a., d., a.) and competence module y = (c., ay, d., ay), there is a
conflicter link from z to y, for every proposition p E c. n d..

The intuitive idea is that modules use these links to activate and inhibit each
other, so that after some time the activation energy accumulates in the modules
that represent the 'best' actions to take given the current situation and goals. Once
the activation level of such a module surpasses a certain threshold, and provided the
module is executable, it becomes active and takes some real actions. The pattern
of spreading activation among modules, a well as the input of new activation
energy into the network is determined by the current state of the environment and
the current global goals of the agent:

" Activation by the State
There is input of activation energy coming from the state of the environment
towards modules that partially match the current state2. A competence
module is said to partially match the current state if at least one of its
preconditions is observed to be true.

" Activation by the Goals
A second source of activation energy is the global goals of the agent. They

'Notice that we do not make the assumption that there is a global continuously updated
world model. In a real robot, each proposition would be delivered by a virtual sensor, which is a
module that decides upon the basis of real sensor data whether a certain proposition should be
considered true.

4 0

increase the activation level of modules that achieve one of the global goals.
A module is said to achieve one of the global goals if one of the goals is a
member of the add list of the competence module. Notice that we distinguish
two types of goals: once-only goals have to be achieved only once, i.e. as soon
as they are achieved, they are deleted from the list of global goals.Permanent
goals have to be achieved continuously. An example of the first is the goal
'spray-paint-car', an example of the second would be 'battery-50

e Inhibition by the Protected Goals
Further, there is an external inhibition (or removal of activation) by the
global goals of the agent that have already been achieved and should be
protected. These 'protected goals' remove some of the activation from the
modules that would undo them. A module is said to undo one of the pro-
tected goals when one of the protected goals is member of the delete list of
the module.

These processes are continuous: there is a continual flow of activation energy
towards the modules that partially match the current state and towards the mod-
ules that realize one of the global goals (at every timestep their activation levels
are increased). There is a continual decrease of the activation level of the modules
that undo the protected goals. This means that the state of the environment and
the global goals may change unpredictably at any moment in time. If this happens,
the external input of activation automatically flows to other competence modules.

Besides the impact on activation levels from the state and goals, competence
modules also activate and inhibit each other. Modules spread activation along
their links as follows:

" Activation of Successors
An executable competence module x spreads activation forward. It increases
(by a fraction of its own activation level) the activation level of those succes-
sors y for which the shared proposition p E a. n c. is not true. Intuitively,
we want these successor modules to become more activated because they are
'almost executable', since more of their preconditions will be fulfilled after
the competence module has become active. Formally, given that competence
module z = (c_, a., 4, a_) is executable, it spreads forward through those
successor links for which the proposition that defines them p E a., is false.

" Activation of Predecessors
A competence module x that is not executable spreads activation backward.
It increases (by a fraction of its own activation level) the activation level of
those predecessors y for which the shared proposition p E c n ay is not true.
Intuitively, a non-executable competence module. spreads to the modules
that 'promise' to fulfill its preconditions that are not yet true, so that the

5

competence module may become executable afterwards. Formally, given that 0
competence module z - (c., a., d., a) is not executable, it spreads backward
through those predecessor links for which the proposition that defined them
p E c. is false.

Inhibition of Conflicters
Every competence module z (executable or not) decreases (by a fraction of
its own activation level) the activation level of those conflicters y for which
the shared proposition p E c. fl s is true. Intuitively, a module tries to
prevent a module that undoes its true preconditions from becoming active.
Notice that we do not allow a module to inhibit itself (while it may activate
itself). In case of mutual conflict of modules, only the one with the higher
activation level inhibits the other. This prevents the phenomenon that the
most relevant modules eliminate each other. Formally, competence module
o= (c. , a., d , a.) takes away activation energy through all of its conflicter
links for which the proposition that defines them p E c, is true, except those
links for which there exists an inverse conflicter link that is stronger.

The global algorithm performs a loop, in which at every timestep the following
computation takes place over all of the competence modules:

1. The impact of the state, goals and protected goals on the activation level of
a module is computed.

2. The way the competence module activates and inhibits related modules

through its successor links, predecessor links and conflicter links is computed.

3. A decay function ensures that the overall activation level remains constant.

4. The competence module that fulfills the following three conditions becomes
active: (i) It has to be executable, (ii) Its level of activation has to surpass
a certain threshold and (iii) It must have a higher activation level than all
other competence modules that fulfill conditions (i) and (ii). When two
competence modules fulfill these conditions (i.e., they are equally strong),
one of them is chosen randomly. The activation level of the module that has
become active is reinitialized to 0 3. If none of the modules fulfills conditions
(i) and (ii), the threshold is lowered by 10%.

These four steps are repeated infinitely. Interesting global observable properties
are: the sequence of competence modules that have become active, the optimality
of this sequence (which is computed by a domain-dependent function), and the

"If this were not the case, modules could become active a couple of times in a row without
this really being desirable.

60

0 speed with which it was obtained (the number of timesteps a competence module
has become active relative to the total number of timesteps the system has been
running).

Four global parameters can be used to 'tune' the spreading activation dynamics,
and thereby the action selection behavior of the agent:

1. 0, the threshold for becoming active, and related to it, 7r the mean level of
activation. e is lowered with 10% each time none of the modules could be
selected. It is reset to its initial value when a module could be selected.

2. 0, the amount of activation energy a proposition that is observed to be true
injects into the network.

3. y, the amount of activation energy a goal injects into the network.

4. 6, the amount of activation energy a protected goal takes away from the
network.

These parameters also determine the amount of activation that modules spread
forward, backward or take away. More precisely, for each false proposition in its
precondition list, a non-executable module spreads a to its predecessors. For each
false proposition in its add list, an executable module spreads a- to its successors.
For each true proposition in its precondition list a module takes away ai from
its conflictors. These factors were chosen this way because the internal spreading
of activation should have the same semantics/effects as the input/output by the
state and the goals. The ratios of input from the state versus input from the
goals versus output by the protected goals are the same as the ratios of input from
predecessors versus input from successors versus output by modules with which a
module conflicts. Intuitively, we want to view preconditions that are not yet true
as subgoals, effects that are about to be true as 'predictions', and preconditions
that are true as protected subgoals.

The algorithm as it is described until now, has a drawback that has to be dealt
with. The length of a precondition list, add list or delete list affects the input
and output of activation to a module. In particular, a module which has a lot
of propositions in its add list and precondition list has more sources of activation
energy than a module that only has a few. Therefore, all input of activation to a
module or removal of activation from a module is weighted by ., where n is (i) the
number of propositions in the precondition list (in the case of input coming from
the state and from the predecessors), (ii) the number of propositions in the add-
list (in the case of input from the goals or from successors), or (iii) the number of
propositions in the delete list (in the case of removal of activation by the protected
goals or by modules with whom the module conflicts).

07

Finally, we want modules that achieve the same goal or modules that use
the same precondition to compete with one another to become active (we view
them as representing a disjunction or choice point). Therefore, the amount of
activation that is spread or taken away for a particular proposition is split among
the affected modules. For example, for a particular proposition p that is observed
to be true the state divides 4' among all of the modules that have that precondition
in their precondition list. The same not only holds for the effect of the goals and
the protected goals, but also for the internal spreading of activation. For example
when a large number of modules achieve a precondition of module m, the activation
a, that m spreads backward for that proposition is equally divided among all of
these modules. When on the other hand there is only one other module that
can make this precondition true, module m increases the activation level of that
module by its own activation level a,,,. One implicit assumption on which this
is based is that the preconditions are in conjunctive normal form. A disjunction
of two preconditions would be represented by a single proposition, for which two
competence modules exist that can make it true.

3 Mathematical Model

This section of the paper presents a mathematical description of the algorithm so
as to make reproduction of the results possible. Given: l

* a set of competence modules l..n,

* a set of propositions P,

* a function S(t) returning the propositions that are observed to be true at
time t (the state of the environment as perceived by the agent); S being
implemented by an independent process (or the real world),

" a function G(t) returning the propositions that are a goal of the agent at
time t; G being implemented by an independent process,

* a function R(t) returning the propositions that are a goal of the agent that
has already been achieved at time t; R being implemented by an independent
process (e.g. some internal or external goal creator),

* a function ezecutable(i, t), which returns 1 if competence module i is exe-
cutable at time t (i.e., if all of the preconditions of competence module i are
members of S(t)), and 0 otherwise.

" a function M(j), which returns the set of modules that match proposition j,
i.e., the modules z for which j E c,

8

* a function A(j), which returns the set of modules that achieve proposition
j, i.e., the modules x for which j E a.,

* a function U(j), which returns the set of modules that undo proposition j,
i.e., the modules x for which j E d,

* Jr, the mean level of activation,

* 0, the threshold of activation, where 0 is lowered 10% every time no module
could be selected, and is reset to its initial value whenever a module becomes
active.

* €, the amount of activation energy injected by the state per true proposition,

* -y, the amount of activation energy injected by the goals per goal,

* 6, the amount of activation energy taken away by the protected goals per
protected goal.

Given competence module x = (c., a., d, at), the input of activation to module x
from the state at time t is:

input-f rom-state(zt) =

where j E S(t) n c, and where # stands for the cardinality of a set.
The input of activation to competence module x from the goals at time t is:

input .f rom.goals(xt) = E 1 1

,#A(i) #a.

where j E G(t) n a.
The removal of activation from competence module x by the goals that are pro-
tected at time t is:

taken-away-by-protectedgoals(, t) = E6 1 1#Uf(j)#d

where j E R(t) n dr.
The following equation specifies what a competence module z = (c", a., d., ax)
spreads backward to a competence module y = (c, a., d, a):

e E ja(t-1) 1 1 if executable(x,t) = 0
spreadsbw(x, y, t)= 0 if executable(x, t) = 1

where j 0 S(t) A j E c. n a,.

9

The following equation specifies what module x spreads forward to module y:

sreads.fw(x,y,t) = I (t-I)---- if executable(x,t) 110 if executable(x, t) 0

where j 0 S(t) A j E a. n !.
The following equation specifies what module z takes away from module y:

takes-away(z, y, t) =

0 if (a 3(t-1) < ay(t-1)) A (3i C S(t) n c n d.)
ma(E6a1)(t-l)! cty(t-1)) otherwise

where j E c. n dy n S(t).
The activation level of a competence module y at time t is defined as:

a (y,0) = 0

a(y,t) = decay(ct(y,t- 1)(1 - active(y,t-1))

+input-fromstate(y, t) + inputf rom._goals(y, t)

-taken aw ay-by-prot ected-goals (y, t)

+ Z(spreads.bw(x, y,t) + qpreads-.fw(x, y, t) - takes-.away(z, y, t)))

where z ranges over the modules of the network, z ranges over the modules of the
network minus the module y, t > 0, and the decay function is such that the global
activation remains constant:

E ay(t) = nr

The competence module that becomes active at time t is module i such that:

a(i,t) >= 0 (1)
active(t,i) = 1 if executable(i,t) = 1 (2)

Vj fulfilling(l) A (2) : a(i,t) >= a(j,t) (3)

active(t,i) = 0 otherwise

4 Example

This section illustrates the algorithm with a concrete, simple example. Later in
the paper more interesting examples are discussed. The example is taken from
the planning chapter of (Charniak & Mc Dermott, 1985). It involves a robot with
two hands which has to spray-paint itself and sand a board. The task has some

10

complexity to it. The robot has to coordinate the use of its hands or otherwise
be clever enough to use a vise to hold the board and perform the jobs in parallel.
Furthermore, it should perform the sanding of the board first, because once it
has painted itself, it is no longer operational. The definition of the competence
modules in terms of their precondition lists, add lists and delete lists is presented
in figure 1.

On the basis of these definitions the spreading activation network in figure 2
is constructed. A possible solution to the problem would be to pick up the board,
put it in the vise, pick up the sander, sand the board in the vise, pick up the
sprayer and spray paint itself.

A (computer-) environment has been built in which the behavior of such a
network of competence modules can be simulated. The program is written in
Common LISP on a SYMBOLICS machine. Figure 3 shows a bitmap of the system
simulating the network described above. The initial state of the environment
is S(O) = (hand-is-empty, hand-is-empty, sander-somewhere, sprayer-somewhere,
operational, board-somewhere), the initial goals are G(O) = (board-sanded, self-
painted).

It is also possible to obtain a trace showing in detail how the spreading acti-
vation has evolved. In the remainder of this section, we study the trace of the
experiment shown in figure 3 in order to explain its action selection behavior. The
activation levels of the competence modules are initialized to zero. At time 1, the
modules don't have any activation energy to spread yet, so there is only the in-
put/output from the state and goals. Notice that SAND-BOARD-IN-HAND and
SAND-BOARD-IN-VISE have to share the activation energy coming from the goal
'board-sanded'.

TIME: I

state of the environment: (HAND-IS-EPTY HAND-IS-EMPTY SANDER-SOMEWHERE
SPRAYER-SOMEHW ME OPERATIONAL BOARD-SOMEWHERE)

goals of the environment: (BOARD-SANDED SELF-PAINTED)
protected goals of the environment: NIL

state given PICK-UP-SANDER an extra activation of 3.3333333
state gives PICK-UP-SPRAYER an extra activation of 3.3333333
state gives PICK-UP-BOARD an extra activation of 3.3333333
state gives PICK-UP-SANDER an extra activation of 10.0
state gives PICK-UP-SPRAYER an extra activation of 10.0
state gives SPRAY-PAINT-SELF an extra activation of 3.3333333
state gives SAIND-BOARD-IN-HAND an extra activation of 2.2222223
state gives SAND-BOARD-IN-VISE an extra activation of 2.2222223
state gives PICK-UP-BOARD an extra activation of 10.0
goals give SAND-BOARD-IN-HAND an extra activation of 35.0

goals give SAND-BOARD-IN-VISE an extra activation of 35.0
goals give SPRAY-PAINT-SELF an extra activation of 70.0

(defmodule PICK-UP-SPAYER
:condition-list '(sprayer-somewhere hand-is-empty)
:add-list '(sprayer-in-hand)
delete-list '(sprayer-somewhere hand-is-empty))

(dofmodule PICK-UP-SANDER

:condition-list '(sander-somewhere hand-is-empty)

:add-list '(sander-in-hand)
:delote-list '(sander-somowhere hand-is-empty))

(defmodulo PICK-UP-BOARD

:condition-list '(board-somewhere hand-is-empty)
:add-list '(board-in-hand)

:deleote-list '(board-somewhere hand-is-empty))

(defmodule PUT-DOWN-SPRAYER

:condition-list '(sprayer-in-hand)

:add-list '(sprayor-somewhere hand-is-empty)
:delete-list '(sprayer-in-hand))

(deomodulo PUT-DOWN-SANDER
:condition-list '(sander-in-hand)

:add-list '(sander-somewhere hand-ia-empty)

:doleto-list '(sandor-in-hand))

(defmodul. PUT-DOWN-BOARD

:condition-list '(board-in-hand)

:add-list '(board-somowhere hand-is-empty)

:delete-list '(board-in-hand))

(dofmodule SAND-BOARD-IN-HAND
:condition-list ' (operational board-in-hand sander-in-hand)
:add-list '(board-sanded)

:delete-list '0)
(defmodule SAND-BOLRD-IN-VISE

:condition-list '(operational board-in-viso sander-in-hand)

:add-list '(board-sanded)

:dolete-list '0)
(defmodule SPRAY-PAINT-SELF

:condition-list '(operational sprayer-in-hand)

:add-list '(self-painted)

:delete-list '(operational))
(defmodule PLACE-BOARD-IN-VISE

:condition-list '(board-in-band)

:add-list '(hand-is-empty board-in-vise)

:delete-l st '(board-in-hand))

Figure 1: Definition of the competence modules involved in the toy example.

12

put-down-spra e ut-down-sander t-down-board

pick-up-sprayer e,- > pick-up-s nd r pick-up-board

spray-paint-self sand-b ard-in-hand place-board-in-vise

sand-board-in-vise

Figure 2: The spreading activation network for the toy example. The predecessor
links (from a competence module to its predecessors) are shown as arrows (the
symbol of an activation link). The conflicter links are shown as inhibition links
(with a little circle at the end). The successor links are not shown (there is a
successor link in the inverse direction for every predecessor link).

13

New EAperiment initialize Change Parameters Change State Change Goals Run Step

P lr4Ae.~ rx R c ti-ono l eoals: 79~a t

r"001.~c !ion tate: 29
I,,fh~e'e f, . hie~e al:9n. a. t on 1e.~el: 20 PLACE-SCARD-Iit-IISE
7hres1hold: 45

State of the Environme~nt SPRAY-PRIT-SELF

(SELF-PRITED SPRAYER-In-MAND BOARD-Ill-VISE
BOARD-SAnDED SRIIDER-Ill-HKtD)

Coal* in the Environment

MI L

Act ivated: (no-agent no-agent PICE -UP-SftIDER
no-aget PICK-UP-BOARD no-agent
SRIID-9ORRD-ZIl-IRlD no-agent no-agent
no-agent no-agent no-agent no-agent PICE -UP-BOARD

ACEA BEC IIIIG A TIV E P ALPF) -E F_ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Fpaigure 3:@. ThSe er interface of PteWNS E simulatio eniomn.Te pe aei

stat :Th se ntrae of the smlto environment, the curnuoasophentokpnh esut ofn the

simulation (among which is the list of activated modules). The right-hand panes
display the activation levels of competence modules over time (the X-a-Xis repre-
sents time, while the Y-ais displays the activation level). The little circles tell
when a competence module has become active.

14

0
activation-levels of modules after decay:

activation-level PLACE-BOARD-IN-VISE: 0.0
activation-level SPRAY-PLINT-SEL: 73.333336
activation-level SAND-BOARD-IN-HAND: 37.22222
activation-level SAID-BOARD-IN-VISE: 37.22222
activation-level PICK-UP-SANDER: 13.333333
activation-level PICK-UP-SPREER: 13.333333
activation-level PICK-UP-BOARD: 13.333333
activation-level PUT-DOWN-SPRATER: 0.0
activation-level PUT-DOWN-SANDER: 0.0
activation-level PUT-DOWN-BOARD: 0.0

NO MODULE becoming active
threshold is lowered to 40.5

None of the executable modules has accumulated enough activation to become
active. As a result the threshold is lowered by 10%. At time 2, the input/output
from the state and goals is the same as at time 1 (not reprinted). Now there is also
some spreading activation among modules. Notice that the modules that match
the goals, SPRAY-PAINT-SELF, SAND-BOARD-IN-VISE and SAND-BOARD-
IN-HAND spread backwards to their predecessors PICK-UP-SPRAYER, PICK-
UP-SAN-DER, PICK-UP-BOARD, and PLACE-BOARD-IN-VISE to make their
conditions true. So the false preconditions of the modules that achieve the goals
are treated as 'subgoals' b.- the algorithm.

In case there is only one predecessor for a false precondition, they increase
that module's activation level with their own activation level. For example, PICK-
UP-SPRAYER receives as much activation as what SPRAY-PAINT-SELF has,
because it is the only module that achieves the precondition 'sprayer-in-hand'. No-
tice further that SAND-BOARD-IN-HAND and SAND-BOARD-IN-VISE weaken
SPRAY-PAINT-SELF because it deletes their precondition 'operational'. Finally
the executable modules, PICK-UP-SPRAYER, PICK-UP-SANDER and PICK-
UP-BOARD activate their successors. This activation is less important than the
backward spreading, because we want the impact of goals (and subgoals) to be
greater than that of the state (and the 'almost true propositions').

TIME: 2

state gives ...

PLACE-BOARD-IN-VISE spreads 0.0 backward to PICK-UP-BOARD for BOARD-IN-HAND
SPRAY-PAINT-SELF spreads 73.333336 backward to PICK-UP-SPRATER for SPRAYER-IN-HAND
SAND-BOARD-IN-HAND spreads 37.22222 backward to PICK-UP-BOARD for BOARD-IN-HAND
SAND-BOARD-IN-HAND spreads 37.22222 backward to PICK-UP-SANDER for SANDER-IN-HAND
SAND-BOARD-IN-HAND decreases (inhibits) SPRAY-PAINT-SELF with 26.587301 for OPERATIONAL
SAND-BOARD-IN-VISE spreads 18.61111 backward to PLACE-BOARD-IN-VISE for BOARD-IN-VISE

* 15

SAND-BOARD-IN-VISE spreads 37.22222 backward to PICK-UP-SADER for SANDER-IN-HAND
SAND-BOARD-IN-VISE decreases (inhibits) SPRAT-PAINT-SELF with 26.587301 for OPERATIONAL
PICK-UP-SANDER spreads 0.42328046 forward to SAND-BOARD-IN-HAND for SANDER-IN-HAND
PICK-UP-SANDER spreads 0.42328046 forward to SAND-BOARD-IN-VISE for SANDER-IN-HAND
PICK-UP-SANDER spreads 1.2698413 forward to PUT-DOWN-SANDER for SANDER-IN-HAND
PICK-UP-SPRATER spreads 0.96238096 forward to SPRAY-PAINT-SELF for SPRAYER-IN-AND
PICK-UP-SPRATER spreads 1.9047619 forward to PUT-DOWN-SPRAYER for SPRAYER-IN-HAND
PICK-UP-BOARD spreads 1.2698413 forward to PLACE-BOARD-IN-VISE for BOARD-IN-HAND
PICK-UP-BOARD spreads 0.42328045 forward to SAND-BOARD-IN-HAND for BOARD-IN-HAND
PICK-UP-BOARD spreads 1.2698413 forward to PUT-DOWN-BOARD for BOARD-IN-HAND
PUT-DOWN-SPRAYER spreads 0.0 backward to PICK-UP-SPRATER for SPRAYER-IN-HAND
PUT-DOWN-SANDER spreads 0.0 backward to PICK-UP-SANDER for SANDER-IN-HAND
PUT-DOWN-BOARD spreads 0.0 backward to PICK-UP-BOARD for BOARD-IN-HAND

activation-levels of modules after decay:
activation-level PLACE-BOARD-IN-VISE: 7.447046
activation-level SPRAY-PAINT-SELF: 35.377182
activation-level SAND-BOARD-IN-HAND: 28.202648
activation-level SAND-BOARD-IN-VISE: 28.044096
activation-level PICK-UP-SANDER: 37.874393
activation-level PICK-UP-SPRAYER: 37.458195
activation-level PICK-UP-BOARD: 23.931622
activation-level PUT-DOWN-SPRATER: 0.7134894
activation-level PUT-DOWN-SANDER: 0.475696
activation-level PUT-DOWN-BOARD: 0.4756596

NO MODULE becoming active
threshold is lowered to 36.45

Again, none of the executable modules is activated enough to be selected.
At time 3, the spreading activation patterns remain unchanged, except for the
amounts of activation energy that are given or taken away by modules. In par-
ticular, PICK-UP-SPRAYER receives less activation from its successor SPRAY-
PAINT-SELF, than what PICK-UP-SANDER receives from SAND-BOARD-IN-
HAND and SAND-BOARD-IN-VISE together.

TIME: 3

state gives ...

PLACE-BOARD-IN-VISE spreads ...

activation-levels of modules after decay:
activation-level PLACE-BOARD-IN-VISE: 9.899059
activation-level SPRAY-PAINT-SELF: 29.082869
activation-level SAID-BOARD-IN-HAND: 27.521559
activation-level SAND-BOARD-IN-VISE: 27.146523
activation-level PICK-UP-SANDER: 44.079823
activation-level PICK-UP-SPRATER: 32.721424

16

activation-level PICK-UP-BOARD: 24.479343
activation-level PUT-DOWN-SPRATER: 2.4768724
activation-level PUT-DOWN-SANDER: 1.6674367
activation-level PUT-DOWN-BOARD: 1.12S1162

module becoming active: PICK-UP-SANDER

The module PICK-UP-SANDER now has accumulated enough activation to be-
come active. As a result the state changes, and thus also the input coming from the
state and the internal spreading activation patterns. Notice that SAND-BOARD-
IN-VISE and SAND-BOARD-IN-HAND now inhibit PUT-DOWN-SANDER to
prevent it from undoing the precondition 'sander-in-hand'. Notice also that PICK-
UP-BOARD decreases the activation level of PICK-UP-SPRAYER for the pre-
condition 'hand-is-empty'. This inhibition will become stronger in time because
SAND-BOARD-IN-VISE and SAND-BOARD-IN-HAND will be enforced since
now more of their preconditions are true.

TIME: 4

state of the environment: (SANDER-IN-HAND HAND-IS-EMPTT SPRAYER-SOMEWHERE OPERATIONAL
BOARD-SOMEWHERE)

goals of the environment: (BOARD-SANDED SELF-PAINTED)
protected goals of the environment: NIL

state gives SAND-BOARD-IN-HAND an extra activation of 2.2222223
state gives SAND-BOARD-IN-VISE an extra activation of 2.2222223
state gives PUT-DOWN-SANDER an extra activation of 6.6866665
state gives PICK-UP-SANDER an extra activation of 3.3333333
state gives PICK-UP-SPRAtYER an extra activation of 3.3333333
state gives PICK-UP-BOARD an extra activation of 3.3333333
state gives PICK-UP-SPtYER an extra activation of 10.0
state gives SPRAY-PAINT-SELF an extra activation of 3.3333333
state gives SAND-BOARD-IN-HAND an extra activation of 2.2222223
state gives SAND-BOARD-IN-VISE an extra activation of 2.2222223
state gives PICK-UP-BOARD an extra activation of 10.0
goals give SAND-BOARD-IN-HAND an extra activation of 35.0
goals give SAND-BOARD-IN-VISE an extra activation of 35.0
goals give SPRAY-PAIFT-SELF an extra activation of 70.0

PLACE-BOARD-IN-VISE spreads 9.699069 backward to PICK-UP-BOARD for BOARD-IN-HAND
SPRAY-PAINT-SELF spreads 29.082869 backward to PICK-UP-SPRATER for SPRAYER-IN-HAND
SAND-BOARD-IN-HAND spreads 27.621569 backward to PICK-UP-BOARD for BOARD-IN-HAND
SAND-BOARD-IN-HAND decreases (inhibits) PUT-DOWN-SANDER with 19.658267 for SANDER-IN-HAND
SAND-BOARD-IN-HAND decreases (inhibits) SPRAY-PAINT-SELF with 19.658257 for OPERATIONAL
SAND-BOARD-IN-VISE spreads 13.673261 backward to PLACE-BOARD-IN-VISE for BOARD-IN-VISE
SAND-BOARD-IN-VISE decreases (inhibits) PUT-DOWN-SANDER with 19.390373 for SANDER-IN-HAND
SAND-BOARD-IN-VISE decreases (inhibits) SPRAY-PAINT-SELF with 19.390373 for OPERATIONAL
PICK-UP-SANDER spreads 0.0 backward to PUT-DOWN-SANDER for SANDER-SOMEWHER E
PICK-UP-SPRAYER spreads 2.3372447 forward to SPRAY-PAINT-SELF for SPRAYER-IN-HAND

0 17

PICK-UP-SPRATER spreads 4.6744896 forward to PUT-DOWN-SPRATER for SPRATER-IN-AND
PICK-UP-SPRITER decreases (inhibits) PICK-UP-SIDER with 5.8431116 for HAND-IS-EMPTY
PICK-UP-SPRAYER decreases (inhibits) PICK-UP-BOARD with 6.8431116 for HAND-IS-EMPTY
PICK-UP-BOARD spreads 2.3313663 forward to PLACE-BOARD-IN-VISE for BOARD-IN-HAND
PICK-UP-BOARD spreads 0.7771221 forward to SAND-BOARD-IN-HAND for BOARD-IN-HAND
PICK-UP-BOARD spreads 2.3313663 forward to PUT-DOWN-BOARD for BOARD-IN-HIND
PICK-UP-BOARD decreases (inhibits) PICK-UP-SANDER with 4.3713117 for HAND-IS-EMPTY
PUT-DOWN-SPRATER spreads 2.4768724 backward to PICK-UP-SPRAYER for SPRAYER-IN-HAND
PUT-DOWN-SANDER spreads 0.23820525 forward to PICK-UP-SANDER for SANDER-SOMEWHERE
PUT-DOWN-BOARD spreads 1.1261162 backward to PICK-UP-BOARD for BOARD-ZN-HAND

activation-levels of modules after decay:
activation-level PLACE-BOARD-IN-VISE: 13.320736
activation-level SPRAY-PAINT-SELF: 34.184002
activation-level SAND-BOARD-IN-HAND: 36.24447

activation-level SAND-BOARD-IN-VIS: 34.64504
activation-level PICK-UP-SANDER: 0.12393018
activation-level PICK-UP-SPRTER: 40.380216
activation-level PICK-UP-BOARD: 36.682684
activation-level PUT-DOWN-SPRAYER: 3.720613
activation-level PUT-DOWN-SANDER: 0.0
activation-level PUT-DOWN-BOARD: 1.798291

NO MODULE becoming active
threshold is lowered to 40.5

At time 5, the spreading activation pattern is similar to that of time 4. The
state and the goals spread activation to the same modules. Also modules keep
spreading activation to the same modules, except that now the amounts they give
and take away have changed (because the activation levels of the modules at time
4 are different from those at time 3).

TIME: 6

state gives ...

PLACE-BOARD-IN-VISE spreads ...

activation-levels of modules after decay:
activation-level PLACE-BOARD-IN-VISE: 16.370311
activation-level SPRAY-PAINT-SELF: 27.239319
activation-level SAND-BOARD-IN-HAND: 34.161662
activation-level SAND-BOARD-IN-VISE: 33.368526
activation-level PICK-UP-SANDER: 0.0
activation-level PICK-UP-SPRAYER: 41.26312
activation-level PICK-UP-BOARD: 41.91644

activation-level PUT-DOWN-SPRAYER: 4.2737665
activation-level PUT-DOWN-SANDER: 0.027907925

activation-level PUT-DOWN-BOARD: 2.379076

18

module becoming active: PICK-UP-BOARD

The module that becomes active is PICK-UP-BOARD. The state of the envi-
ronment changes by the actions performed by this module, so that the input from
the state and the internal spreading activation patterns are different at time 6.

TIME: 6

state of the environment: (BOARD-IN-HAND SANDER-IN-HAND SPRAYER-SOMEWHERE OPERATIONAL)
goals of the environment: (BOARD-SANDED SELF-PAINTED)
protected goals of the environment: NIL

state gives PLACE-BOARD-IN-VISE an extra activation of 6.6666666
state gives SAND-BOARD-IN-HAND an extra activation of 2.2222223
state gives PUT-DOWN-BOARD an extra activation of 6.6666665
state gives SAND-BOARD-IN-AND an extra activation of 2.2222223
state gives SAND-BOARD-IN-VISE an extra activation of 2.2222223
state gives PUT-DOWN-SANDER an extra activation of 6.6666665
state gives PICK-UP-SPRAYER an extra activation of 10.0
state gives SPRAT-PAINT-SELF an extra activation of 3.3333333
state gives SAD-BOARD-IN-RAND an extra activation of 2.2222223
state gives SAND-BOARD-IN-VISE an extra activation of 2.2222223
goals give SAND-BOARD-IN-HAND an extra activation of 35.0
goals give SAID-BOARD-IN-VISE an extra activation of 35.0
goals give SPRAY-PALIT-SELF an extra activation of 70.0

PLACE-BOARD-IN-VISE spreads 0.7319196 forward to PICK-UP-SANDER for HAND-IS-EMPTY
PLACE-BOARD-IN-VISE spreads 0.7319196 forward to PICK-UP-SPRAYER for HAND-IS-EMPTY
PLACE-BOARD-IN-VISE spreads 0.7319196 forward to PICK-UP-BOARD for HAND-IS-EMPTY
PLACE-BOARD-IN-VISE spreads 1.4638392 forward to SAND-BOARD-IN-VISE for BOARD-IN-VISE
PLACE-BOARD-IN-VISE decreases (inhibits) PUT-DOWN-BOARD with 10.978794 for BOARD-IN-HAND
SPRAY-PAINT-SELF spreads 27.239319 backward to PICK-UP-SPRAYER for SPRAYER-IN-HAND
SAND-BOARD-IN-AND decreases (inhibits) PLACE-BOARD-IN-VISE with 12.200556 for BOARD-IN-HAND
SAND-BOARD-IN-HAND decreases (inhibits) PUT-DOWN-BOARD with 12.200565 for BOARD-IN-HAND
SAND-BOARD-IN-AND decreases (inhibits) PUT-DOWN-SANDER with 24.40111 for SANDER-IN-HAND
SAND-BOARD-IN-HAND decreases (inhibits) SPRAY-PAINT-SELF with 24.40111 for OPERATIONAL
SAND-BOARD-IN-VISE spreads 16.684263 backward to PLACE-BOARD-IN-VISE for BOARD-IN-VISE
SAND-BORD-IN-VISE decreases (inhibits) PUT-DOWN-SANDER with 23.834661 for SANDER-IN-HAND
SAND-BOARD-IN-VISE decreases (inhibits) SPRAY-PAINT-SELF with 23.834681 for OPERATIONAL
PICK-UP-SANDER spreads 0.0 backward to PUT-DOWN-SANDER for SANDER-SOMEWHERE
PICK-UP-SANDER spreads 0.0 backward to PLACE-BOARD-IN-VISE for HAND-IS-EMPTT
PICK-UP-SANDER spreads 0.0 backward to PUT-DOWN-SPRAYER for AND-IS-EMPTY
PICK-UP-SANDER spreads 0.0 backward to PUT-DOWN-SANDER for HAND-IS-EMPTY
PICK-UP-SANDER spreads 0.0 backward to PUT-DOWN-BOARD for HAND-IS-EMPTY
PICK-UP-SPRAYER spreads 5.15789 backward to PLACE-BOARD-IN-VISE for HAND-IS-EMPTY
PICK-UP-SPRAYER spreads 5.16789 backward to PUT-DOWN-SPRAYER for HAND-IS-EMPTY
PICK-UP-SPRAYER spreads 6.15789 backward to PUT-DOWN-SANDER for HAND-IS-EMPTY
PICK-UP-SPRAYER spreads 6.15789 backward to PUT-DOWN-BOARD for HAND-IS-EMPTY
PICK-UP-BOARD spreads 0.0 backward to PUT-DOWN-BOARD for BOARD-SOMEWHERE

* 19

PICK-UP-BOARD spreads 0.0 backward to PLACE-BOARD-IN-VISE for HAND-IS-EMPTY
PICK-UP-BOARD spreads 0.0 backward to PUT-DOWN-SPRAYER for HAND-IS-EMPTY
PICK-UP-BOARD spreads 0.0 backward to PUT-DOWN-SANDER for HAND-IS-EMPTT
PICK-UP-BOARD spreads 0.0 backward to PUT-DOWN-BOARD for HAND-IS-EMPTT
PUT-DOWN-SPRAYER spreads 4.2737665 backward to PICK-UP-SPRAYER for SPRAYER-IN-HAND
PUT-DOWN-SANDER spreads 0.0039869467 forward to PICK-UP-SADER for SANDER-SOMEWHERE
PUT-DOWN-SANDER spreads 0.0013289489 forward to PICK-UP-SANDER for HAND-IS-EMPTY
PUT-DOWN-SANDER spreads 0.0013289489 forward to PICK-UP-SPRAYER for HAND-IS-EMPTY
PUT-DOWN-SANDER spreads 0.0013289489 forward to PICK-UP-BOARD for RAD-IS-EMPTY
PUT-DOWN-BOARD spreads 0.3398679 forward to PICK-UP-BOARD for BOARD-SOMEWHERE
PUT-DOWN-BOARD spreads 0.1132893 forward to PICK-UP-SADER for RAD-IS-EMPTY
PUT-DOWN-BOARD spreads 0.1132893 forward to PICK-UP-SPRAYER for HAND-IS-EMPTY
PUT-DOWN-BOARD spreads 0.1132893 forward to PICK-UP-BOARD for HAND-IS-EMPTY

activation-levels of modules after decay:
activation-level PLACE-BOARD-IN-VISE: 18.660385
activation-level SPRAT-PAINT-SELF: 30.829237

ctivation-levl SAD-BOARD-IN-R AID: 44.666897
activation-level SAND-BOARD-IN-VISE: 43.763033
activation-level PICK-UP-SANDER: 0.0100476
activation-level PICK-UP-SPRAYER: 49.26829
activation-level PICK-UP-BOARD: 0.6988587
activation-level PUT-DOWN-SPRAYER: 5.6667523
activation-level PUT-DOWN-SANDER: 3.0382743
activation-level PUT-DOWN-BOARD: 3.0382743

NO MODULE becoming active
threshold is lowered to 40.6

Again the spreading activation patterns at time 7 are like those at time 6.
In particular SAND-BOARD-IN-HAND will now have received enough activation
from the state and the goals to become active. Notice that although PICK-UP-
SPRAYER has a very high activation level, it does not become active because not
all of its preconditions are fulfilled.

TIME: 7

state gives ...

PLACE-BOARD-IN-VISE spreads ...

activation-levels of modules after decay:
activation-level PLACE-BOARD-IN-VISE: 19.967624

activation-level SPRAY-PAINT-SELF: 21.800142
activation-level SAND-BOARD-IN-RAND: 45.89835
activation-level SAND-BOARD-IN-VISE: 46.175903
activation-level PICK-UP-SANDER: 1.1233512
activation-level PICK-UP-SPRAYER: 51.47401
activation-level PICK-UP-BOARD: 1.2286371

20

activation-level PUT-DOWN-SPRAYER: 6.3068533
activation-level PUT-DOWN-SANDER: 3.486372
activation-level PUT-DOWN-BOARD: 3.6389647

module becoming active: SIND-BOARD-IN-HAND

As a consequence the state and goals change. The only remaining goal to
be achieved is 'self-painted'. In order to do so, the robot has to free at least
one hand. Notice that PICK-UP-SPRAYER spreads backwards to the modules
that can achieve this, i.e., PLACE-BOARD-IN-VISE, PUT-DOWN-SANDER and
PUT-DOWN-BOARD.

TIME: 8

state of the environment: (BOARD-SANDED BOARD-IN-BAND SANDER-IN-HAND SPRAYER-SOMEWHERE

OPERATIONAL)
goals of the environment: (SELF-PAINTED)
protected goals of the environment: (BOARD-SANDED)

state gives PLACE-BOARD-IN-VISE an extra activation of 6.6666665
state gives SAND-BOARD-IN-RAND an extra activation of 2.2222223
state gives PUT-DOWN-BOARD an extra activation of 6.6666666
state gives SAND-BOARD-IN-AND an extra activation of 2.2222223
state gives SAND-BOARD-IN-VISE an extra activation of 2.2222223
state gives PUT-DOWN-SANDER an extra activation of 6.6666666
state gives PICK-UP-SPRAYER an extra activation of 10.0
state gives SPRAY-PAINT-SELF an extra activation of 3.3333333
state gives SAND-BOARD-IN-RAND an extra activation of 2.2222223
state gives SAND-BOARD-IN-VISE an extra activation of 2.2222223
goals give SPRAY-PAINT-SELF an extra activation of 70.0

PLACE-BOARD-IN-VISE spreads 0.9608346 forward to PICK-UP-SANDER for HAND-IS-EMPTY
PLACE-BOARD-IN-VISE spreads 0.9608346 forward to PICK-UP-SPRAYER for HAND-IS-EMPTY
PLACE-BOARD-IN-VISE spreads 0.9608345 forward to PICK-UP-BOARD for HAND-IS-EMPTY
PLACE-BOARD-IN-VISE spreads 1.901669 forward to SAND-BOARD-IN-VISE for BOARD-IN-VISE
PLACE-BOARD-IN-VISE decreases (inhibits) PUT-DOWN-BOARD with 14.262517 for BOARD-IN-HAND
SPRAY-PAINT-SELF spreads 21.800142 backward to PICK-UP-SPRAYER for SPRAYER-IN-HAND
SAND-BOARD-IN-HAND decreases (inhibits) PLACE-BOARD-IN-VISE with 0.0 for BOARD-IN-HAND
SAND-BOARD-IN-HAND decreases (inhibits) PUT-DOWN-BOARD with 0.0 for BOARD-IN-HAND
SAID-BOARD-IN-HAND decreases (inhibits) PUT-DOWN-SANDER with 0.0 for SANDER-IN-HAND
SAND-BOARD-I1-HAND decreases (inhibits) SPRAY-PAINT-SELF with 0.0 for OPERATIONAL
SAND-BOARD-IN-VISE spreads 22.687962 backward to PLACE-BOARD-IN-VISE for BOARD-IN-VISE
SAND-BOARD-IN-VISE decreases (inhibits) PUT-DOWN-SANDER with 32.2685 for SANDER-IN-HAND
SAND-BOARD-IN-VISE decreases (inhibits) SPRAY-PAINT-SELF with 32.2686 for OPERATIONAL
PICK-UP-SANDER spreads 0.6616756 backward to PUT-DOWN-SANDER for SANDER-SOMEWHERE
PICK-UP-SANDER spreads 0.1404189 backward to PLACE-BOARD-IN-VISE for HAND-IS-EMPTY
PICK-UP-SANDER spreads 0.1404189 backward to PUT-DOWN-SPRAYER for HAND-IS-EMPTY
PICK-UP-SANDER spreads 0.1404189 backward to PUT-DOWN-SANDER for HAND-IS-EMPTY
PICK-UP-SANDER spreads 0.1404189 backward to PUT-DOWN-BOARD for HAND-IS-EMPTY

* 21

PICK-UP-SPRAYER spreads 8.4342513 backward to PLACE-BOARD-IN-VISE for HAND-IS-EMPTY
PICK-UP-SPRATER spreads 6.4342513 backward to PUT-DOWN-SPRAYER for HAND-IS-EMPTY
PICK-UP-SPRATER spreads 6.4342513 backward to PUT-DOWN-SANDER for RAND-IS-EMPTY
PICK-UP-SPRAYER spreads 6.4342613 backward to PUT-DOWN-BOARD for HAND-IS-EMPTY
PICK-UP-BOARD spreads 0.61426854 backward to PUT-DOWN-BOARD for BOARD-SOMEWHERE
PICK-UP-BOARD spreads 0.15356714 backward to PLACE-BOARD-IN-VISE for HAND-IS-EMPTY
PICK-UP-BOARD spreads 0.1536714 backward to PUT-DOWN-SPRAYER for HAND-IS-EMPTY
PICK-UP-BOARD spreads 0.15356714 backward to PUT-DOWN-SANDER for HAND-IS-EMPTY
PICK-UP-BOARD spreads 0.15356714 backward to PUT-DOWN-BOARD for HAND-IS-EMPTY
PUT-DOWN-SPRAYER spreads 6.3068533 backward to PICK-UP-SPRAYER for SPRAYER-IN-HAND
PUT-DOWN-SANDER spreads 0.49806316 forward to PICK-UP-SANDER for SINDER-SOMEWHERE
PUT-DOWN-SANDER spreads 0.16601773 forward to PICK-UP-SANDER for HAND-IS-EMPTT
PUT-DOWN-SANDER spreads 0.16601773 forward to PICK-UP-SPRAYER for HAND-IS-EMPTY
PUT-DOWN-SANDER spreads 0.16601773 forward to PICK-UP-BOARD for HAND-IS-EMPTY
PUT-DOWN-BOARD spreads 0.6066664 forward to PICK-UP-BOIRD for BOARD-SOMEWHERE
PUT-DOWN-BOARD spreads 0.16862213 forward to PICK-UP-SANDER for HAND-IS-EMPTY
PUT-DOWN-BOARD spreads 0.1852213 forward to PICK-UP-SPRATER for HAND-IS-EMPTY
PUT-DOWN-BOARD spreads 0.16862213 forward to PICK-UP-BOARD for HAND-IS-EMPTY

activation-levels of modules after decay:
activation-level PLACE-BOARD-IN-VISE: 37.119087
activation-level SPRAY-PAINT-SELF: 41.70643
activation-level SAND-BOARD-IN-HAND: 4.422868
activation-level SAID-BOARD-IN-VISE: 34.181183
activation-level PICK-UP-SANDER: 1.9284406
activation-level PICK-UP-SPRAYER: 60.28337
activation-level PICK-UP-BOARD: 2.0032084
activation-level PUT-DOWN-SPRAYER: 8.647864
activation-level PUT-DOWN-SANDER: 4.8363376
activation-level PUT-DOWN-BOARD: 4.8712296

NO MODULE becoming active

threshold is lowered to 40.5

At time 9 till 17 the activation patterns remain the same. SPRAY-PAINT-
SELF accumulates activation coming from the goals and spreads this activation
further towards its only predecessor, namely PICK-UP-SPRAYER. PICK-UP-
SPRAYER spreads the received activation further backwards towards the modules
that can make its precondition 'hand-is-empty' true. Because there are many such
modules, it takes some time before one of them is selected.

TIME: 17

state gives ...

PLACE-BOARD-IN-VISE spreads ...

activation-levels of modules ater decay:
activation-level PLACE-BOARD-IN-VISE: 17.6626

22

activation-level SPRAY-PAINT-SELF: 61.41764
activation-level SAND-BOARD-IN-HAND: 6.4295135
activation-level SAND-BOARD-IN-VISE: 6.108067

activation-level PICK-UP-SANDER: 2.5221777
activation-level PICK-UP-SPRAYER: 79.323494

activation-level PICK-UP-BOARD: 2.2743216

activation-level PUT-DOWN-SPRAYER: 10.060002
activation-level PUT-DOWN-SANDER: 8.496746
activation-level PUT-DOWN-BOARD: 6.7056316

module becoming active: PLACE-BOARD-IN-VISE

Finally PLACE-BOARD-IN-VISE becomes active, and makes one hand free.
As a result PICK-UP-SPRAYER (which had already accumulated enough activa-
tion) is executable.

TIME: 18

state of the environment: (HAND-IS-EMPTY BOARD-IN-VISE BOARD-SANDED SANDER-IN-HAND
SPRAYER-SOMEWHERE OPERATIONAL)

goals of the environment: (SELF-PAINTED)
protected goals of the environment: (BOARD-SANDED)

state gives PICK-UP-SANDER an extra activation of 3.3333333
state gives PICK-UP-SPRAYER an extra activation of 3.3333333

state gives PICK-P-BDARD an extra activation of 3.3333333
state gives SAND-BOARD-IN-VISE an extra activation of 6.6666665
state gives SAND-BOARD-IN-HAND an extra activation of 2.2222223
state gives SAND-BOARD-IN-VISE an extra activation of 2.2222223
state gives PUT-DOWN-SANDER an extra activation of 6.6666665
state gives PICK-UP-SPRAYER an extra activation of 10.0
state gives SPRAY-PAINT-SELF an extra activation of 3.3333333
state gives SAND-BOARD-IN-HAND an extra activation of 2.2222223
state gives SAND-BOARD-IN-VISE an extra activation of 2.2222223
goals give SPRAY-PAINT-SELF an extra activation of 70.0

PLACE-BOARD-IN-VISE spreads 0.0 backward to PICK-UP-BOARD for BOARD-IN-HAND
SPRAT-PAINT-SELF spreads 61.41764 backward to PICK-UP-SPRAYER for SPRAYER-IN-HAND
SAID-BOARD-IN-HAND spreads 6.4295135 backward to PICK-UP-BOARD for BOARD-IN-HAND
SAND-BOARD-IN-HAND decreases (inhibits) PUT-DOWN-SANDER with 4.5926097 for SANDER-IN-HAND
SAND-BOARD-IN-HAND decreases (inhibits) SPRAY-PAINT-SELF with 4.5925097 for OPERATIONAL
SAND-BOARD-IN-VISE decreases (inhibits) PUT-DOWN-SANDER with 4.362905 for SANDER-IN-HAND
SAND-BOARD-IN-VISE decreases (inhibits) SPRAT-PAINT-SELF with 4.362905 for OPERATIONAL
PICK-UP-SANDER spreads 1.2610888 backward to PUT-DOWN-SANDER for SANDER-SOMEWHERE
PICK-UP-SANDER decreases (inhibits) PICK-UP-BOARD with 0.46038888 for HAND-IS-EMPTY
PICK-UP-SPRAYER spreads 5.666964 forward to SPRAT-PAINT-SELF for SPRATER-IN-HAND
PICK-UP-SPRAYER spreads 11.331928 forward to PUT-DOWN-SPRATER for SPRAYER-IN-HAND
PICK-UP-SPRAYER decreases (inhibits) PICK-UP-SANDER with 14.16491 for HAND-IS-EMPTY
PICK-UP-SPRAYER decreases (inhibits) PICK-UP-BOARD with 14.16491 for HAND-IS-EMPTY
PICK-UP-BOARD spreads 1.1371608 backward to PUT-DOWN-BOARD for BOARD-SOMEWHERE

*23

PUT-DOWN-SPRAYER spreads 10.060002 backward to PICK-UP-SPRAYER for SPRAYER-IN-HAND
PUT-DOWN-SANDER spreads 1.2138209 forward to PICK-UP-SANDER for SANDER-SOMEWHERE
PUT-DOWN-BOARD spreads 5.7066316 backward to PICK-UP-BOARD for BOARD-IN-HAND

activation-levels of modules after decay:
activation-level PLACE-BOARD-IN-VISE: 0.0
activation-level SPRAY-PAINT-SELF: 71.77567
activation-level SAND-BOARD-IN-HAND: 5.936989
activation-level SAND-BOARD-IN-VISE: 9.401367
activation-level PICK-UP-SANDER: 0.6827248
activation-level PICK-UP-SPRATER: 89.61452
activation-level PICK-UP-BOARD: 3.1151197
activation-level PUT-DOWN-SPRAYER: 11.679616
activation-level PUT-DOWN-SANDER: 4.077989
activation-level PUT-DOWN-BOARD: 3.7359893

module becoming active: PICK-UP-SPRAYER

And finally, the module SPRAY-PAINT-SELF (which also already had accu-

mulated enough activation) becomes executable and is selected.

TIME: 19

state of the environment: (SPRAYER-IN-B 'A. -jARD-1N-VISE BOARD-SANDED SANDER-IN-HAND OPERATID
goals of the environment: (SELF-PAIN '.D)
protected goals of the env'zo~nrent: (BOARD-SANDED)

state gives SPRAY-PAITT-SELF an extra activation of 5.0
state gives PUT-DOWN-SPRAYER au 7t-ra act 4vation of 10.0
state gives SAND-BOARD-IN-VISE an extra activation of 6.68666665
state gives SAND-BOARD-IN-HAND an extra activation of 2.2222223
state gives SAND-BOARD-IN-VISE an extra activation of 2.2222223
state gives PUT-DOWN-SANDER an extra activation of 6.8686665
state gives SPRAY-PAINT-SELF an extra activation of 3.3333333
state gives SAND-BOARD-IN-HAND an extra activation of 2.2222223
state gives SAND-BOARD-IN-VISE an extra activation of 2.2222223
goals give SPRAY-PAINT-SELF an extra activation of 70.0

PLACE-BOARD-IN-VISE spreads 0.0 backward to PICK-UP-BOARD for BOARD-IN-HAND
SPRAT-PAINT-SELF decreases (inhibits) PUT-DOWN-SPRAYER with 51.288337 for SPRAYER-IN-HAND
SAND-BOARD-IN-HAND spreads 5.936989 backward to PICK-UP-BOARD for BOARD-IN-HAND
SAND-BOARD-IN-HIND decreases (inhibits) PUT-DOWN-SANDER with 4.2407064 for SANDER-IN-HAND
SAND-BOARD-IN-HAND decreases (inhibits) SPRAT-PAINT-SELF with 4.2407064 for OPERATIONAL
SAND-BOARD-IN-VISE decreases (inhibits) PUT-DOWN-SANDER with 6.7152624 for SANDER-IN-HAND
SAND-BOARD-IN-VISE decreases (inhibits) SPRiY-PAINT-SELF with 6.7152624 for OPERATIONAL
PICK-UP-SANDER spreads 0.3313624 backward to PUT-DOWN-SANDER for SANDER-SOMEWHERE
PICK-UP-SANDER spreads 0.0828406 backward to PLACE-BOARD-IN-VISE for HiND-IS-EMPTY
PICK-UP-SANDER spreads 0.0828406 backward to PUT-DOWN-SPRAYER for HAND-IS-EMPTY
PICK-UP-SANDER spreads 0.0828406 backward to PUT-DOWN-SANDER for HAND-IS-EMPTY
PICK-UP-SANDER spreads 0.0828408 backward to PUT-DOWN-BOARD for HAND-IS-EMPTT

24

PICK-UP-SPRAYER spreads 0.0 backward to PUT-DOWN-SPRAYER for SPRAYER-SOMEWHERE

PICK-UP-SPRAYER spreads 0.0 backward to PLACE-OARD-IN-VISE for HAND-IS-EMPTY
PICK-UP-SPRAYER spreads 0.0 backward to PUT-DOWN-SPRAYER for HAND-IS-EMPTY
PICK-UP-SPRAYER spreads 0.0 backward to PUT-DOWN-SANDER for HAND-IS-EMPTY
PICK-UP-SPRAYER spreads 0.0 backward to PUT-DOWN-BOARD for HAND-IS-EMPTY
PICK-UP-BOARD spreads 1.5575598 backward to PUT-DOWN-BOARD for BOARD-SOMEWHERE
PICK-UP-BOARD spreads 0.38938996 backward to PLACE-BOARD-IN-VISE for HAND-IS-EMPTY
PICK-UP-BOARD spreads 0.38938996 backward to PUT-DOWN-SPRAYER for HAND-IS-EMPTY
PICK-UP-BOARD spreads 0.38938996 backward to PUT-DOWN-SANDER for HAND-IS-EMPTY

PICK-UP-BOARD spreads 0.38938996 backward to PUT-DOWN-BOARD for HAND-IS-EMPTY
PUT-DOWN-SPRAYER spreads 1.6685166 forward to PICK-UP-SPRAYER for SPRAYER-SOMEWHERE
PUT-DOWN-SPRAYER spreads 0.5561722 forward to PICK-UP-SANDER for HAND-IS-EMPTY

PUT-DOWN-SPRAYER spreads 0.5561722 forward to PICK-UP-SPRAYER for HAND-IS-EMPTY
PUT-DOWN-SPRAYER spreads 0.5561722 forward to PICK-UP-BOARD for HAND-IS-EMPTY
PUT-DOWN-SANDER spreads 0.5825699 forward to PICK-UP-SANDER for SANDER-SOMEWHERE
PUT-DOWN-SANDER spreads 0.19418997 forward to PICK-UP-SANDER for HAND-IS-EMPTY
PUT-DOWN-SANDER spreads 0.19418997 forward to PICK-UP-SPRAYER for HAND-IS-EMPTY
PUT-DOWN-SANDER spreads 0.19418997 forward to PICK-UP-BOARD for HAND-IS-EMPTY
PUT-DOWN-BOARD spreads 3.7359893 backward to PICK-UP-BOARD for BOARD-IN-HAND

activation-levels of modules after decay:
activation-level PLACE-BOARD-IN-VISE: 0.47223055
activation-level SPRAY-PAINT-SELF: 139.15305

activation-level SAND-BOARD-IN-HAND: 10.3814335
activation-level SAND-BOARD-IN-VISE: 20.512478
activation-level PICK-UP-SANDER: i.996657

activation-level PICK-UP-SPRAYER: 2.4188788
activation-level PICK-UP-BOARD: 13.638461

activation-level PUT-DOWN-SPRAYER: 0.47223065
activation-level PUT-DOWN-SANDER: 0.8035929
activation-level PUT-DOWN-BOARD: 5.78578

module becoming active: SPRAY-PAINT-SELF

5 Results

The algorithm presented in this paper can be modeled by a system of differential
equations. This system is however too complicated to solve, so that exact predic-

tions about the resulting action selection behavior are not possible. Nevertheless.

important qualitative results can be oDtained, for example on possible phase tran-
sitions with the growth of parameters, such as the size of the network, the mean
fanout of a node, etc (Huberman & Hogg, 1987). We have evaluated the algorithm
empirically by performing a wide series of experiments using several example ap-

plications. The networks had such diverse properties as being very 'wide', very
'long', containing cycles, local high concentrations of links, unlinked subnetworks,

destructive modules, conflicting and mutually conflicting modules, etc. All of the

0) 25

problems presented were solved for large ranges of parameters.
The simulated societies cannot be said to show a 'jump-first think-never' be-

havior. They do exhibit planning capabilities. They 'consider' to some extent the
effects of a sequence of actions before actually embarking on its execution. If a
sequence of competence modules exists that transforms the current situation into
the goal state, then this sequence becomes highly activated through the cumulative
effect of the forward spreading (starting from the current state) and the backward
spreading (starting from the goals). If this sequence potentially implies negative
effects, it is weakened by the inhibition rules.

More specifically, goal-relevance of the selected action is obtained through the
input from the goals and the backward spreading of activation. Situation relevance
and opportunistic behavior are obtained through the input of the state and the
spreading of activation forward. Conflicting and interacting goals are taken into
account through inhibition by the protected goals and inhibition among conflicting
modules. Further, local maxima in the action selection are avoided, provided that
the spreading of activation can go on long enough (the threshold is high enough),
so that the network can evolve towards the optimal activity pattern. And finally,
the algorithm automatically biases towards ongoing plans, because these tend to
have a shorter distance between state and goals and are favored by the remains of
the past spreading activation patterns. Moreover, the global parameters serve as
controls by which one can mediate smoothly among these different action selection
characteristics.

The notion of a plan is here very different from the classical one existing in
AL. A network does not construct an explicit representation of a single plan, but
instead expresses its 'intention' or 'urge' to take certain actions by high activation
levels of the corresponding modules. Another important difference is that there is
no centralized preprogrammed search process. Instead, the operators (competence
modules) themselves select the sequence of operators that are activated, and this
in a non-hierarchical, highly distributed way. There is no search tree constructed,
i.e., there is no explicit representation built of state changes after taking certain

actions.
Consequently, the system does not suffer from the disadvantages of search trees

such as: that information is duplicated in several parts of a tree; trees grow ex-
ponentially with the size of the problem; trees only make a strict representation
of plans possible (impossible to work with uncertainties); etc. In addition, the
spreading activation process is a much cheaper operation. Of course these advan-
tages are not cost-free. The action selection produced is less 'rational' than that
of the sophisticated deliberative planners built in Al. On the other hand the latter
systems, when applied in autonomous agents, suffer from brittleness and slowness.
What is particularly interesting about the algorithm presented here is that it pro-
vides parameters to mediate between adaptivity, speed and reactivity on the one

26

hand and thoughtfulness and rationality on the other hand.
The following subsections discuss the results observed in detail.

5.1 Goal-Orientedness

The algorithm selects actions that contribute to the global goals of the agent. Given
that g is a global goal of the network, then -f of new activation energy is put into
the modules that achieve this goal. These modules will in turn per subgoal (false
precondition) increase the activation level of the modules that make this subgoal
true, and so on. This backward spreading of activation takes care that modules
that contribute to goal g are more activated than modules that don't. Furthermore
modules that contribute to different goals (or subgoals) receive activation for each
of these goals and will therefore be favored over modules that only contribute to
one.

If the agent has more than one goal, modules that contribute to the goal that
is 'closest' are favored. 'Closest' here means that the path from the goal-achieving
modules to the state-matching modules is the shortest. The algorithm also favors
modules that have little competition. For example, if the agent has two goals gl
and g2 and if there is one module that achieves gl and there are two modules that
achieve g2 then the algorithm favors the module that achieves gl, and therefore
the probability of gl being realized first is higher. All of these comments hold for
subgoals as well as for goals, since subgoals (false preconditions of modules) are
treated the same way as goals.

The behavior can be made more or less goal-oriented in its selection by vary-
ing the ratio of -y to .0 (the amount of activation energy injected by the state per
true proposition). For example, if 0 = 0, traditional backward chaining is per-
formed (i.e., the selection is completely goal-oriented). On the other hand, the
system now takes less advantage of opportunities, it is less reactive and less biased
by what is currently observed and what is predicted to become true in the near
future. Furthermore, it is also slowed down because the current state of the envi-
ronment does not bias the action selection. Ideally we want a system that is mainly
goal-oriented, but does take advantage of interesting opportunities. This can be
obtained by choosing 7 > 0. The optimal ratio is of course problem dependent
(more on choosing the parameter values in section 6.4).

5.2 Situation Relevance

The algorithm activates the modules that are relevant to the current situation
more than the ones that are not. The processes responsible for this are the input
of activation energy coming from the state of the environment and the spread-
ing of activation energy by executable modules towards their successors (which

027

implements some sort of prediction of what will be true next). As already men-
tioned in the previous section, the advantages are that (1) the system biases its
search and thereby speeds up the action selection and (2) the system is able to
exploit opportunities (let its action selection be driven more by what is happening
in the environment). The importance of (2) for an autonomous agent has recently
been recognized by the Al community as is witnessed by the growth of interest
in so-called reactive systems. The characteristic of situation-orientedness can be
exploited to a higher or lesser degree by varying the parameter .0. Figure 4 shows
the results of experiments with different ratios for the parameters 7 and 4.

The forward spreading rules take care that a module receives activation from
the state in proportion to how 'close' it is to being executable given the current
state of the environment. A module is closest to being executable if it really is
executable (i.e., if all its preconditions are fulfilled). For non-executable modules,
'closeness' is inversely proportional to the weighted sum of the lengths of a path
from executable modules to the module itself for each of the preconditions of the
module. This implies for example, that a module that has two preconditions pl
and p2 of which one, for example pl, cannot be made true given the current state,
receives relatively less activation from the state and, therefore, has less probability
of being part of a 'plan' 4 .

5.3 Adaptivity

The action selection process is completely 'open'. The environment as well as the
goals may change at run time. As a result, the external input/output as well as the
internal activation/inhibition patterns will change reflecting the modified situation.
Even more, the external influence during 'planning' or spreading activation is so
important that plans are only formed as long as the influence or input/output (or
'disturbance') from the environment and goals is present.

Because of this continuous 'reevaluation', the action selection behavior adapts
easily to unforeseen or changing situations. For example, if after the activation
of module 'pick-up-board', the board is not in the robot's hand (e.g. because it
slipped away), the same competence module becomes active once more, because it
still receives a lot of activation from the competence modules that want the board
to be in the robot's hand. Or if there would be a second module which can make
that condition become true, than that one will be tried (because 'pick-up-board's
activation level will have been reset to 0). Serendipity is another example of this
ability to adapt. If a goal or subgoal would suddenly appear to be fulfilled, the
modules that contributed to this goal will no longer be activated. All of these
experiments have been simulated with success. Notice that such unforeseen events

4 It may however receive a lot of activation from the goals and use that activation to urge its
predecessors to make its preconditions true.

28

New Experiment Initialize Change Par New Experiment Initialize Change Pare
Paraneters Parameters

Influence fron goals: 58 Influence from goals: 50
Influence fro: state: 9 Influence from state: 19
Influence fro. achieved goals: 58 Influence from achieved goals: 59
Mean actition level: 29 Mean activation level: 29
Threshold: 49 Threshold: 49

State of the Eavroeaent State of the Environmeat

(HAND-IS-EMPTY A-TOWER-IS-BEING-BUILT (HAND-IS-EMPTY A-TOWER-IS-BEIMG-BUILT
A-TOWER-IS-BEIMG-BUILT A-TObER-IS-BEIMG-BUILT R-TOWER-IS-BEIMG-BUILT A-TOWER-IS-BEIMG-BUILT
A-FIRST-BLOCK-IS-LAYED FREE-SPACE) A-FIRST-BLOCK-IS-LRYED FREE-SPACE)

Goals ia the Eavironmeat Goals ia the Environment

(A-TOWER-IS-BEIMG-BUILT) (A-TOWER-IS-BEIMG-BUILT)

Results Results

Activated: (no-agent no-agent no-agent no-agent Activated: (no-agent no-agent no-agent SEE GRASP
SEE GRASP no-agent FIND-PLRCE BEGIN FIND-PLRCE BEGIN no-agent no-agent SEE
no-agent no-agent SEE GRASP MOVE GRASP MOVE no-agent no-agent SEE GRASP
no-agent no-agent no-agent SEE GRASP MOVE FIND-PLACE no-agent SEE GRASP
MOVE no-agent no-agent no-agent SEE MOVE)
GRASP MOVE) Optimality: 85.71429 2 Speed: 63.636364 2

Optimality: 199.9 2 Speed: 59.0 2

COMPUTING INFLUENCE FROM STATE AND GOALS COMPUTING INFLUENCE FROM STATE AND GOALS

COMPUTING SPREADING OF ACTIVATION COMPUTING SPREADING OF ACTIVATIOM

COMPUTING DECRY BY TIME COMPUTING DECRY BY TIME

AGENT BECOMING ACTIVE: MOVE ARGEMT BECOMING ACTIVE: MOVE

AA Command: AM Command:

Figure 4: These results show that one can mediate between goal-orientedness of the
action selection and data-orientedness by varying the ratio of f to 4'. In the first
experiment, the network performs traditional backward chaining (0 = 0). In the
second experiment there is some forward spreading going on, but 0 is still smaller
than -y . The input from the state and forward spreading bias the search so that
the action selection is now much faster. The resulting action selection is however
less optimal (the action selection is more data-driven, which makes that actions
that are not relevant to the goal may get selected, e.g. in this case, 'find-place' is
activated a second time).

*29

a -o- one -61 b - two - - c -a three -0 d -- a four -s- e - five - f

x -*- one' -a- y - two' -a- z --. three' -- w

Figure 5: A toy network to test adaptivity versus bias (inertia). y -0 three stands
for proposition y is a precondition of module three, while three --f y stands for
proposition y is in the add-list of module three.

do not mean that the system has to 'drop' the ongoing plan and 'build' a new one.
Actually the system continuously compares the different alternatives. When some
condition changes, this may have the effect that an alternative (sub-)plan becomes
more attractive (more activated) than the current one.

Notice also that it is not the case that the system replans at every timestep.
The 'history' of the spreading activation also plays a role in the action selection
behavior since the activation levels are not reinitialized at every timestep. So just
like there is a tradeoff between goal-orientedness and state-orientedness, we here
have a tradeoff between adaptivity and bias towards the ongoing plan (see also
next section). One can smoothly mediate among the two extremes by selecting a
particular ratio of the parameters -f and 0 versus 7r (the mean level of activation).

Consider as an example the modules of figure 5. The initial state is (a, z), the
goal is f. After module 'one' had been active, we added w to the global goals.
When -y and 0 are relatively small in comparison with 7, the internal spreading
activation has more impact than the influence from the state of the environment
and the global goals. The resulting action selection behavior is therefore less
adaptive. Concretely in this example it means that, although for goal w the path
from state to goals is shorter, the system continues working on goal f, and only
after f is achieved, start working on goal w (cfr. figure 6). Again the appropriate
solution lies somewhere in the middle. The parameters should be chosen such that
the system does not jump between different goals all the time, but that it does
exploit opportunities and adapts to changing situations.

Notice finally that the algorithm also exhibits another type of adaptivity,
namely fault tolerance. This is a consequence of the distributed nature of the
algorithm. Since no one of the modules is more important than the others, the
networks are still able to perform under degraded preconditions. It is possible
to delete competence modules and the network still does whatever is within its
remaining capabilities. For example, when 'put-board-in-vise' is deleted or made
inactive, the network comes up with a solution that does not involve this module.

30

New Experiment Initialize Change Par New Experiment Initialize Change Paro
.Prameters Praneta

Influence from 9oals: 20 Influence fron goals: 59
Influence from state: 5 Influence from state: 20
Influence cfon achieved goals: 5 Influence fron achieved goals: 29
Mean activation level: 20 Mean activation level: 29
Threshold: 35 Threshold: 35

State of the Environment State of the Environment

(W F) (D U)

Cools in the Environment Goals in the Enviromenat

NIL (F)

Results Results

Activated: (no-agent no-agent no-agent no-agent Activated: (no-agent no-agent no-agent no-agent
no-agent no-agent ONE TWO THREE FOUR no-agent ONE no-agent no-agent
FIVE ONE-PRIME TWO-PRIME THREE-PRIME) no-agent no-agent TWO no-agent

Optimality: 100.0 2 Speed: 57.14285? 2 no-egent no-agent OMlE-PRIME no-agent
TWO-PRIME THREE-PRIME THREE)

Optinality: 199.9 2 Speed: 31.578947 2

COMPUTING INFLUENCE FROM STATE AND GOALS .COMPUTING IFLUEMCE FROM STATE AtD GOALS

COMPUTING SPREADING OF ACTIVATION ;COMPUTING SPREADING OF ACTIVATION

COMPUTING DECRY BY TIME COMPUTIMG DECAY BY TIME

AGENT BECOMING ACTIVE: THREE-PRIME AGENT BECOMING ACTIVE: THREE

AR Command: AA Command:

Figure 6: The action selection behavior can be made less adaptive and more biased
towards ongoing plans by choosing -y and 0 relatively small in comparison with
7r as in the first experiment. After module one had been active, we added the
goal w. Although there are less modules required to achieve this goal, the system
continues working on goal f. In the second experiment, the system is less biased
towards ongoing goals, because -y and 0 are relatively high in comparison with 7r.

31

a -- one - b - two -- c -- s three --- d -- a four -- e -- a five -a- f

x -- m one' - y - two' -- z -p three' --- w -o- four'--o- v -- e- five' -- r

Figure 7: A toy network to test horizontal bias.

5.4 Bias to Ongoing Plans

The algorithm demonstrates an implicit bias mechanism. It favors modules that
contribute to the ongoing goal and subgoals except when there is enough urge to
start working on something different. The main reason bias is exhibited is that
the activation levels are not reinitialized every time a module is activated. As a
consequence the history of past activation spreading plays a role in the selection
of action, in particular when the effect of the state and goals is relatively small in
comparison with the mean activation level. But even if that is not the case, the
algorithm exhibits bias towards ongoing plans. More specifically, it demonstrates
two types of bias: horizontal and vertical.

1. Horizontal Bias
A first type of bias demonstrated by the action selection algorithm is the favor-

"Ag of actions that contribute to the current goal (the goal on which it was working
before). Given the set of modules in figure 7 and an initial state S(O) = (a, z),
and global goals G(O) = (f, r). One to five are the competence modules necessary
to achieve goal f, while one' to five' are the modules that contribute to goal r.

When simulated this network does not jump back and forth between modules
that contribute to f and modules that contribute to r. Instead it starts working
on one goal, completes it and then works on the other goal (cfr. figure 8). This is
the case, because when either module one or one' is chosen, the distance of that
path to the goals is shorter than that of the other path. Therefore, the spreading
of activation backwards has a larger effect and makes sure that the started path is
finished first. As the paths from state to goals grow longer, the threshold has to
be increased to obtain this effect (more on the effect of the threshold in the next
section).

2. Vertical Bias
A second type of bias is the favoring of actions that contribute to a 'brother'

goal (a subgoal of the same overall goal). Consider the modules in figure 9. The
initial state of the environment is S(0) = (al, cl, el,gl, a2, c2, e2,g2), the goals are
G(O) = (kl, k2).

Again, if the threshold is high enough, this network first executes all the actions
that contribute to one goal and then starts working on the other goal (cfr. figure
10). The reason is that once a predecessor of a module has been active, the node

32

New Experiment Initialize Change Pari New Experiment Initialize Change Part

Parmeters -parameter

Influence from goals: 50 Influence fron goals: 50

Influence from state: 29 Influence fron state: 29

Influence from achieved goals: 29 Influence from achieved goals: 29

Mean activation level: 29 Moen activation level: 29

Threshold: 25 Threshold: 19

State of the rnvirolefnt taee of * E mvironmeat

(R F) (R F)

goals nathe Enviroment ioa n Mth -=VIrMoat

NIL NIL

Results Results

Activated: (no-agent no-agent no-agent no-agent Activated: (OME ONE-PRIME no-agent TWO THREE FOUR

ONE no-agent no-agent TWO THREE FOUR FIVE TWO-PRIME THREE-PRIME FOUR-PRIME

FIVE ONE-PRIME TWO-PRIME THREE-PRIME FIVE-PRIME)

FOUR-PRIME FIVE-PRIME) Optimality: 19.0 R Speed: 9g.9g99 2

Optinality: 18e.0 2 Speed: 62.5 2

COMPUTING INFLUENCE FROM
STATE

AM
GOALS

COMPUTING SPREADING OF ACTIVATION COMPUTING SPREADING OF RCTIVATIOM

COMPUTING DECRY BY TIME COMPUTING DECRY BY TIME

AGENT BECOMING ACTIVE: FIVE-PRIME AGENT 1ECOMING ACTIVE: FIVE-PRIME

AR Command: AR nW4

Figure 8: When the threshold is high enough, the action selection behavior ex-

hibits a horizontal bias (left-hand experiment). When the threshold is not high

enough, the system jumps between modules contributing to one goal and modules

contributing to the second goal (right hand experiment).

33

al -none - bl N five iI

ci 1 two --a-d1
el three ---1fl six / seven --- kl

gi 1 four hl A six - ji

a2 " one' - b2
c2 - two d2 five' - i2

e2 -bthree' -. f2 seven' -- a k2

g2 - four' - h2 ' six' j2

Figure 9: A toy network to test vertical bias.

itself receives more activation energy from the state of the environment. Therefore
it has more activation to spread to its remaining predecessors.

As already stated in the previous section, the system can be given a higher
or lesser degree of 'inertia' with respect to the changing environment and goals
by selecting the ratio of the global parameters appropriately. Especially in very
dynamic environments, it might be necessary to make the system adapt slower,
otherwise it might never get anything done.

5.5 Avoiding Goal Conflicts

A bad ordering of actions can dramatically increase the number of actions necessary
to achieve a goal, or even prevent a solution from ever being found. Any action
selection algorithm should therefore to some degree be able to arbitrate among
conflicting actions. Our algorithm is able to do so because of the inhibition rules.
The modules in a network that undo a protected goal are weakened by a factor
of 6. If 6 is large enough (in particular in relation to -y and 0), this results in an
action selection that protects global goals.

The same is true for subgoals (or preconditions of modules). Every module
decreases the activation level of modules that undo its true conditions. Again this
results in an action selection behavior in which 'subgoals' are protected and thereby

34

New Experiment Initialize Change Par, New Experiment Initialize Change Par
Parameters Parameters

Influence fron 9oals: 50 Influence fron goals: 56
Influence fron state: 20 Influence from state: 26
Influence fron achieved goals: 29 Influence fron achieved goals: 28
Mean activation level: 20 Mean activation level: 29
Threshold: 25 Threshold: 18

State of the Environment State of the Environment

(K1K2) (K1 K2)

Goals in the Environment goals in the E iavromment

NIL NIL

Results Results

Activated: (no-agent no-agent no-agent FOUR-PRIME Rctivated: (FOUR-PRIME no-agent THREE-PRIME
no-agent no-agent THREE-PRIME SIR-PRIME TWO OME-PRIME TWO-PRIME
SIX-PRIME no-agent TWO-PRIME ONE-PRIME FIVE-PRIME SEVEN-PRIME ONE FIVE FOUR
FIVE-PRIME SEVEN-PRIME THREE FOUR ONE THREE SIX SEVEN)
TWO FIVE SIX SEVEN) Optnalitty: 166.6 2 Speed: 93.333336 2

Optinality: 109.0 7 Speed: 70.9 2

,COMPUTING INFLUENCE FROM STAlE AND GOALS COMPUTING INFLUENCE FROM STRTE AND GOALS

COMPUTING SPREADING OF ACTIVATION COMPUTING SPREADING OF ACTIVATION

COMPUTING DECRY BY TIME COMPUTING DECRY BY TIME

AGENT BECOMING ACTIVE: SEVEN AGENT BECOMING ACTIVE: SEVEN

AR Command: MR Co....nd:

Figure 10: When the threshold is high enough, the action selection behavior ex-
hibits vertical bias (left-hand experiment). When the threshold is not high enough,
the system jumps between modules contributing to the first goal and modules con-
tributing to the second goal (right hand experiment).

35

A

- B

C

Figure 11: The classical conflicting goals example. The initial state of the world is
S(O)=(clear-a, clear-b, a-on-c), the goals are G(O)=(a-on-b, b-on-c). The system
should first achieve the goal b-on-c and then the goal a-on-b. It is tempted however
to immediately stack a onto b, which may bring it in a deadlock situation (not
wanting to undo the already achieved goal).

(deftodul.e stack-a-on-b
:condition-list '(cleoar-a clear-b)
:add-list '(a-on-b clear-c)
:doleto-list '(clear-b a-on-c))

(de*fmodule stack-b-on-c
: condimtion-list '(clear-c clear-b)
:add-list '(b-on-c clear-a)
:deleote-list '(clear-c b-on-a))

(def odule take-a-from-c
:condition-list '(clear-a a-on-c)
:add-list '(clear-c)
:delete-list '(a-on-c))

Figure 12: Some of the modules involved in the blocks world domain.

goal conflicts are avoided. To illustrate how this happens, we reimplemented the
classical anomalous situation example from the blocks world (Sussman, 1975).
Figure 11 illustrates the problem. Figure 12 shows some of the competence modules
involved in this example.

Figure 13 and 14 show the results obtained. In the first experiment 6 has the
same value as y which is far greater than 4'. The result is that the inhibition of
'stack-a-on-b' by 'stack-b-on-c' for condition 'clear-b' is far more important than
its activation by the state. Because of this, the module 'take-a-from-b' dominates
over 'stack-a-on-b', despite the fact that the latter one achieves a goal. If 8 is
not high enough (as in the second experiment), the urge to fulfill the goal 'a-on-
b' dominates over the urge to avoid 'clear-b', so that the system does start by
stacking a on b. It is however still able to restore the situation and obtain the two
goals, since the influence from the protected goals is not high enough to keep the
system from undoing the achieved goal 'a-on-b'. Again, a balance has to be found

36

New Experiment Initialize Change Parameters Change State Change Goals Run Step
Paraeters R4g.evele .1 Revene

Influence from goals: 50
Influence from state: 29
Influence fron achieved goals: 50 STACK-R-ON-B
ean activ'tion level: 29i hreshold: 55

STACK-A-ON-C

State of the Environnent

(R-ON-B CLEAR-C B-OM-C CLEAR-R) STACK-B-ON-A

STACK-B-ON-C

oals, in the Environment STACK-C-ON-R

(A-OM-B B-ON-C)

STACK-C-OM-B

TAKE-R-FROM-B

Results

Activated: (no-agent no-agent TAKE-A-FROM-C TRKE-R-FROM-C
STACK-B-OM-C STACK-R-ON-B)

Optimality: 199.9 2 Speed: 69.9 ,

TAKE-B-FROM-A

TRKE-B-FROM-C

COMPUTING INFLUENCE FROM STATE AND GOALS

:COMPUTING SPREADING OF ACTIVATIONi TRKE-C-FROMl-B

COMPUTING DECAY BY TIME

GENT BECOMING ACTIVE: STACK-R-ON-B TAKE-C-FROM-A
Coinand :

Figure 13: When the influence from protected goals and the threshold are high
enough, the system is able to avoid problems with conflicting goals.

between not caring about goal conflicts at all and being so rigid as to never undo
an achieved (sub-) goal, thereby risking deadlocks.

5.6 Thoughtfulness

A network only looks ahead in a local neighborhood (in time) which is determined
by the threshold 9. The behavior can be made more or less thoughtful by increasing
the threshold 8. This makes the spreading activation process go on for a longer
time before a specific action is selected. As such, it allows the network to look
ahead further, thereby avoiding local maxima (in time) of activation levels. For
example, in the blocks-world example above, the module 'stack-a-on-b' initially
has the highest activation level (since it receives direct input from both the state
and the goals). The threshold has to be put high enough to avoid that this module
is chosen right away, so that the network can go on taking into account the conflicts

37

New Experiment Initialize Change Par New Experiment Initialize Change Para
Parameters Paramaeters

Influence fron goals: 50 Influence fron goals: 56
Influence fron state: 26 Influence from state: 20
Influence fron achieved goals: 20 Influence from achieved goals: 50
Mean activation level: 20 Mean activation level: 20
Threshold: 55 Thresho!J: 35

Stato of the Environment State of the Envronant

(A-ON-B CLERR-C B-ON-C CLERR-A) (A-ON-B CLEAR-C B-ON-C CLERR-R)

Coals in the Environment Goals in the Environment

(R-ON-B B-ON-C) (A-ON-B B-ON-C)

Results Results

Activated: (no-agent SfACK-R-ON-B no-agent Activated: (no-agent STRCK-R-ON-B no-agent
no-agent no-a~ent TAKE-A-FROM-B no-agent TAKE-R-FROM-B STACK-B-OM-C
STACK-B-ON-C S1ACK-R-ON-B) STACK-A-ON-B)

Optinality: 75.0 2. Speed: 59.8 2 Optinality: 75.9 Ti Speed: 57.142857 2.

COMPUTING INFLUENCE FROM STATE RD GOALS COMPUTING INFLUENCE FROM STATE AND GOALS
COMPUTING SPREADING OF ACTIVATION COMPUTING SPREADING OF RCTIVATIOM

COMPUTING DECRY BY TIME COMPUTING DECAY BY TIME

AGENT BECOMING ACTIVE: STRCK-R-ON-B AGENT BECOMING ACTIVE: STACK-R-OM-B

MAiH Command: AA Conmand:

Figure 14: In both these experiments the system reacts opportunistically, not
taking into account conflicting goals. In the first experiment, the parameter -y
is low, so that the system is not very sensitive to goal-conflicts. In the second
experiment, the threshold is not high enough, so that the system chooses a local
maximum.

38

among modules.
Ideally, we would like to set the threshold to a very high value (for example

equal to the total activation of the whole network). This would guarantee that
the spreading activation process goes on long enough so that the 'optimal' action
can be selected. The problems with putting the threshold high are first, that
the action selection process would require too much time (especially for an agent
operating in a rapidly changing environment) and second, that the result would
be that the agent would get bogged down trying to take into account the effects of
actions it might take in the far future. This is most probably a wasted effort in an
unpredictable environment. Therefore we do want the agent only to look ahead to
the near future. The desired amount of looking ahead for a particular application
can be obtained by choosing a proper value for the threshold.

5.7 Speed

The counterpart of thoughtfulness is speed. The action selection behavior can be
made faster by varying the threshold 0 as explained above. The resulting action
selection is however less 'thoughtful', which means that it is less goal-oriented, less
situation oriented, that it takes conflicting goals less into account and that it is
less biased towards ongoing plans. Nevertheless. it may sometimes be important
to react fast or it may be a wasted effort to be very thoughtful (i.e., make a lot of
plans and predictions).

Fortunately, the algorithm is not complex, so that it allows speed to be ob-
tained without sacrificing too much thoughtfulness. The algorithm does however
perform some sort of 'search' through a network from goal modules to executable
modles, so one could argue that the algorithm suffers from the same problems as
traditional Al search. More specifically, that the efficiency necessarily goes down
as the number of modules involved in a plan grows (the so-called 'combinatorial
explosion' problem). Nevertheless, it is important to take the following counterar-
guments into consideration:

" The search that is going on here is of a very different nature. Actually,
it resembles marker passing algorithms more than the AI notion of search.
The system does not construct a search tree, nor does it maintain a current
hypothetical state and partial plan. In addition, it evaluates different paths
in parallel, so that it does not have to start from scratch when one path does
not produce a solution, but smoothly moves from one plan to another. As a
result, the computation the algorithm performs is much less costly.

* The system does not 'replan' completely at every timestep. The algorithm
does not reinitialize the activation-levels to zero whenever an action has been
taken. This implies that it may take some time to select the first action to

39

execute, but from then on, the network is biased towards that particular
situation and set of goals. This means that it will take much less time for
the following actions to be selected, in particular when little has changed in
the meantime with respect to the goals or current situation.

* We believe that for real autonomous agents (e.g., mobile robots) the networks
will grow 'larger' instead of 'longer', because typically, the agent will have
more tasks/goals instead of having tasks/goals that require more actions to
be taken (and therefore more 'planning'). Also, large subparts may exist in
the network that appear to be unconnected. As a result, the efficiency of the
system will not be affected so much. Even if some paths from state matchers
to goal achievers would be very long, the system would still come up with
an action because it does not await a convergence in the activation levels
and decreases the threshold with time. The selected action might however
be non optimal.

e The same simple spreading activation rules are applied to each of the mod-
ules. In addition, there are only local, fixed links among modules. This opens
interesting opportunities for a parallel implementation, which would imply a
considerable speed up.

6 Discussion

There are a number of limits to the algorithm as it is now. The main ones are
listed below.

" The language provided to describe the input-output relationship of a compe-
tence module is oversimplified. There is no way to work with abstractions,
neither can variables be used.

* A network does not maintain a record of its past 'search'. As such the same
planning mistake can be made over and over again in the same plan, making
the system loop.

" It is not yet clear how, given a specific application, one can select values for
the global parameters that produce the desired action selection behavior.

In the remainder of this section we discuss the importance of these limits and
sketch solutions to those that represent important limitations. The proposed solu-
tions resonate with the current philosophy and the merits it has. The implemen-
tation of these solutions will be the main concern of our future research.

40

.6.1 Variables

The algorithm does not incorporate classical variables and variable-passing. As a
matter of fact, a lot of its advantages would disappear if they would be introduced.
For example, one reason a lot of search is eliminated is exactly because there are
no variables in the algorithm. A first implication of the absence of variables is
that one cannot specify goals using variables (e.g. goto-location(x,y)). A second
implication is that all modules/operators of the domain have to be instantiated
beforehand, which means that a node has to be created for every parameter.

We try to avoid the need for variables altogether by using only so-called indezical-
functional aspects to describe relevant properties of the immediate environment
(Agre & Chapman, 1987). The main idea here is that internal representations
of objects in the environment are in terms of the purposes and circumstances of
the agent. The module 'spray-paint-self' for example only has to be instantiated
with one parameter, namely 'the-sprayer-I-am-holding-in-my-hand'. Because of
this, it is not necessary to create new operators/modules for every new object that
is introduced in the world. There is no exhaustive combination of operators and
objects.

The idea of indexical-functional aspects is particularly interesting for autonomous
agents because it does not make unrealistic assumptions about what perception
can deliver. In particular, it does not demand that perception can produce the
identity and exact location of objects. The absence of variables does constrain the
language one can use to communicate with the system, but not in a too strong
way. All it requires is a new way of thinking about how to tell an agent what to
do. More specifically, one does not use unique names of objects when specifying
goals. Instead goals are specified in terms of indexical or functional constraints on
the objects involved. For example, one would not tell the agent to go to location
(x,y), but one would tell the agent that the goal is to be in a location that is a
doorway (a small area where it is able to 'go through' a wall).

6.2 Handling Loops

A problem with the current algorithm is that loops in the action selection may
emerge. They only occur very rarely and spring from the fact that the system
does not maintain a history of what it did before. It is questionable whether a
solution to such impasses should be built in. The hypothesis could be adopted that
in a real environment the state and goals will change anyway after some time At
that is very small. This changes the spreading activation patterns and therefore
gets the network out of its impasse. If we insist on avoiding (even temporal)
impasses, this cannot be guaranteed by a careful selection of the parameters. One
very simple solution however could be to introduce some randomness in the system.
Another solution might be to use a second network to monitor possible loops in the

41

first network and take actions whenever this happens. Finally, we could implement
some habituation mechanism for some or all of the modules. This mechanism would
take care that every time a module is activated, it is less likely to become active
in the future (i.e., have local thresholds that vary over time).

6.3 Selecting the Parameters

The global parameters to a large degree determine the effectiveness and character-
istics of the action selection behavior. It is still an open question how the values
for these parameters should be selected. They are very problem dependent, not
only because every problem area requires different degrees of goal-orientedness,
situation-orientedness, speed, adaptivity, etc. But also because the size and struc-
ture of the network also determines these characteristics. For example, in an
application with a very big network, the threshold has to be put higher to obtain
the same results. At the moment we tune the parameters by hand during a series
of experiments. We plan to build a second network of competence modules that
would look at the results of the first one and tune its parameters so as to obtain
the action selection characteristics specified by the user.

7 Related Work

The introductory section already discussed how this work relates to connectionism
and traditional AL. The main difference with the former being that more structure
and competence is built in, the difference with the latter being that classical search
is avoided. The remainder of this section compares this work to so-called 'reactive
systems', to distributed AI and to other hybrid systems.

7.1 Reactive Systems

The approach is related to the so-called 'reactive systems' (Georgeff & Lansky,
1987) (Firby, 1987) (Kaelbling, 1987) (Rosenschein & Kaelbling, 1987) (Schop-
pers, 1987) (Agre & Chapman, 1987) (Sanborn & Hendler, 1987). The emphasis in
these architectures is on a more direct coupling of perception to action, distributed-
ness and decentralization, dynamic interaction with the environment and inherent
mechanisms to cope with resource limitations and incomplete knowledge. They
deemphasize deliberation (or 'thinking' in general) and internal models. The main
difference between our algorithm and these systems is that we neither 'prewire' nor
'precompile' the control flow. The arbitration among modules is a run-time process
which differs according to the goals that are given to the system and the situation
the system finds itself in. It therefore constitutes a simpler, more distributed and
more general solution to the problem of action selection.

42

4

. 7.2 Distributed AI
The difference between this work and the bulk of work in distributed planning
(Bond & Gasser, 1988) (Huhns, 1987) as well as with the work on black-board
systems (Hayes-Roth, 1979), is that in the latter planning modules communicate
among themselves on a much higher level. They communicate using a language,
sometimes debate and negotiate among one another or even reason about each
other. The problem-specific needs for a communication language therefore consti-
tutes the major barrier for the widespread applicability of these techniques. The
algorithm presented in this paper makes integration of different modules in one sys-
tem easier because the communication among modules is reduced to a minimum
and happens on an information-scarce level (only numbers are being communi-
cated). Furthermore, modules do not have to share a global internal model or
global blackboard. They are said to communicate 'through the world' (Brooks,
1986).

7.3 Hybrid Systems

Finally, this algorithm is related to some of the hybrid systems that have been
built for planning and decision making. Hendler (1988) describes a hybrid system
in which a massive parallel component is used to provide heuristic information to
a classical AI planner. A marker propagating network guides the classical planner
towards more relevant plans. (Lehnert, 1987) describes a hybrid system that uses
a stack and copy mechanism for control and numerical relaxation over a structured
network for smooth decision making. The difference with the algorithm presented
here is that in both these systems the control is still hierarchical and centralized,
and might therefore turn out to be too inflexible for use in autonomous agents
operating in a dynamic environment.

8 Conclusions

The results reported upon in the paper demonstrate the feasibility of using an
activation/inhibition dynamics among competence modules to solve the problem
of action selection for an autonomous agent operating in a dynamic world. Such a
scheme has particular advantages over traditional, deliberative hierarchical meth-
ods. The price to pay is that the actions selected might be less rational. However,
the algorithm provides global controls which one can use to tune the action se-
lection behavior along several criteria, such as thoughtfulness/rationality versus
speed, goal-orientedness versus data-orientedness, and adaptivity versus bias to
ongoing goals.

43

9 Acknowledgements

Nils Nilsson, Marcel Schoppers, Dan Shapiro and Michael Braverman provided
very valuable criticisms and suggestions. Marvin Minsky, Rodney Brooks, Luc
Steels, J.R. Anderson and Jerome Feldman provided inspiration. Jan Torreele,
Piet Spiessens and Tony Bell proofread the paper. Supported by Siemens with ad-
ditional support from the University Research Initiative under Office of Naval Re-
search contract N00014-86-K-0685, and the Defense Advanced Research Projects
Agency under Office of Naval Research contract N00014-85-k-0124. The author
is a research associate of the Belgian National Science Foundation. She currently
holds a position as visiting professor at the M.I.T. Artificial Intelligence Labora-
tory.

10 References

Agre, P. & Chapman, D. (1987) Pengi: An Implementation of a Theory of Activity.
Proceedings of the Sixth National Conference on Artificial Intelligence, AAAI-87.
Morgan Kaufmann, Los Altos, California.

Bond, A. & Gasser, L. (1988) Readings in Distributed Artificial Intelligence. Mor-
gan Kaufmann, San Mateo, California.

Brooks, R. (1986) A Robust Layered Control System for a Mobile Robot. IEEE
Journal of Robotics and Automation. Volume RA-2, Number 1.

Chandrasekaran, B., Goel, A. & Allemang, D. (1988) Connectionism and Informa-
tion Processing Abstractions, AI-magazine, Vol. 9, No. 4.

Charniak, E. & Mc Dermott, D. (1985) Introduction to Artificial Intelligence.
Addison-Wesley.

Firby, R. (1987) An Investigation into Reactive Planning in Complex Domains.
Proceedings of the Sixth National Conference on Artificial Intelligence, AAAI-87.
Morgan Kaufnann, Los Altos, California.

Georgeff, M. & Lansky, A. (1987) Reactive Reasoning and Planning. Proceedings
of the Sixth National Conference on Artificial Intelligence, AAAI-87. Morgan
Kaufmann, Los Altos, California.

Hayes-Roth, B. et. al. (1979) Modeling Planning as an Incremental Opportunistic
Process. Proceedings of IJCAI-79, Tokyo, Japan.

Hendler, J. (1988) Integrating Marker-Passing and Problem Solving, A Spreading
Activation Approach to Improved Choice in Planning. Lawrence Erlbaum Ass.,

44

Hillsdale, New Jersey.

Huberman, B. & Hogg, T. (1987) Phase Transitions in Artificial Intelligence Sys-
tems. AI-Journal, Volume 23, Number 2.

Huhns, M. (1987) Distributed Artificial Intelligence. Pitman, London.

Kaelbling, L. (1987) An Architecture for Intelligent Reactive Systems. Reasoning
about Actions and Plans: Proceedings of the 1986 Workshop. Morgan Kaufmann,
Los Altos, California.

Laird, J., Rosenbloom, P. & Newell, A. (1986) Chunking in SOAR: The Anatomy of
a General Learning Mechanism. Machine Learning. Volume 1, Number 1. Kluwer
Academic Publishers.

Lehnert, W. (1987) Case-Based Problem Solving with a Large Knowledge-Base of
Learned Cases. Proceedings of the AAAI-87 Conference, Seattle, Washington.

Maes, P. (1989) The Dynamics of Action Selection. Proceedings of the IJCAI-89
conference, Detroit.

Minsky, M. (1986) The Society of the Mind. Simon and Schuster, New York, New
York.

Rosenschein, S. & Kaelbling, L. (1987) The Synthesis of Digital Machines with
Provable Epistemic Properties. In J.F. Halpern (editor), Proceedings of the 1986
Conference on Theoretical Aspects of Reasoning about Knowledge. Morgan-Kaufnann,
Los Altos, California.

Sanborn, J. and Hendler, J. (1988) A Model of Reaction for Planning in Dynamic
Environments. International Journal of Al in Engineering, 1988. Special Issue on
Planning.

Schoppers, M. (1987) Universal Plans for Reactive Robots in Unpredictable Envi-
ronments. Proceedings of IJCAI-87, Milan, Italy.

Simon, H. (1955) A Behavioral Model of Rational Choice. Quarterly Journal of
Economics, 69: 99-118.

Steels, L. (1989) Connectionist Problem Solving, an AI Perspective. Connection-
ism in Perspective, Eds: Pfeiffer R., Schreter Z., Fogelman F. and Steels L., Else-
vier, Amsterdam.

Sussman, G. (1975) A Computer Model of Skill Acquisition. Elsevier Publishers.
New York.

45

